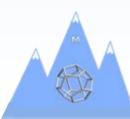

Molecular Hydrogen Storage in Novel Binary Clathrate Hydrates at Near-Ambient Temperatures and Pressures

> Colorado School of Mines Center for Hydrate Research Golden, CO

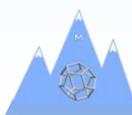
L.J. Rovetto, T.A. Strobel, K.C. Hester, S.F. Dec, C.A. Koh, K.T. Miller, E.D. Sloan


2006 DOE H₂ Program Review

May 16 -19th, 2006

Agenda

- ⇒ Introduction & Motivation
- \Rightarrow H₂/THF Binary Hydrate Measurements
- ⇒ H₂/Cyclohexanone Binary Hydrate Measurements
- ⇒ H₂ Storage in Semi-Clathrate Materials
- ⇒ Hydrotropes Effect on H₂ Hydrate Formation
- ⇒ Future Work

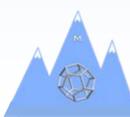

Accomplishments

⇒H₂ hydrate pressure reduced by 2 orders of magnitude with THF

 \Rightarrow H₂ is enclathrated in sII hydrate

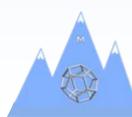
⇒Storage capacity confirmed

- \Rightarrow Up to one H₂ per 5¹² of sII binary clathrate
- \Rightarrow H₂ storage independent of xTHF (at tested conditions)

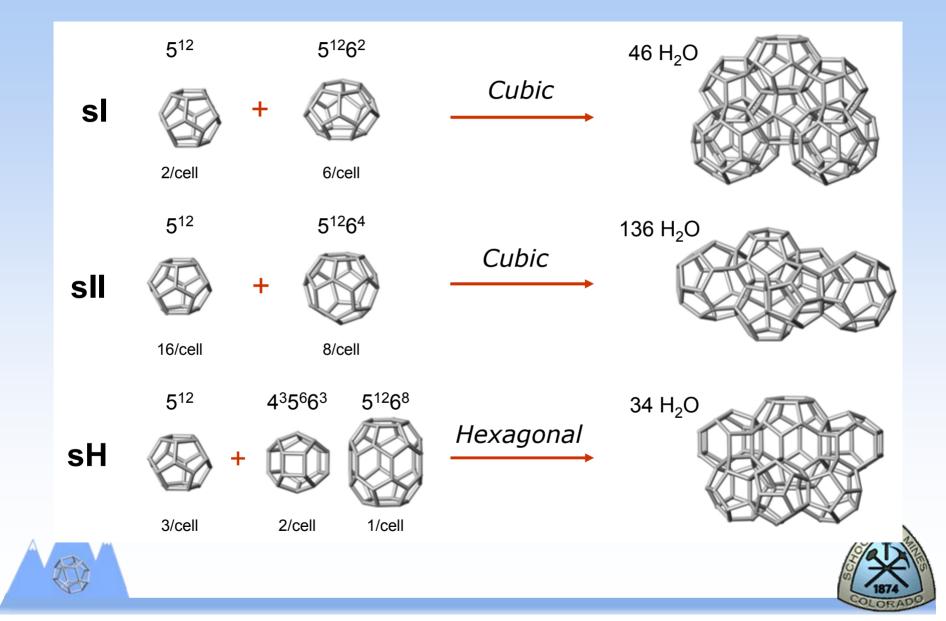


Accomplishments

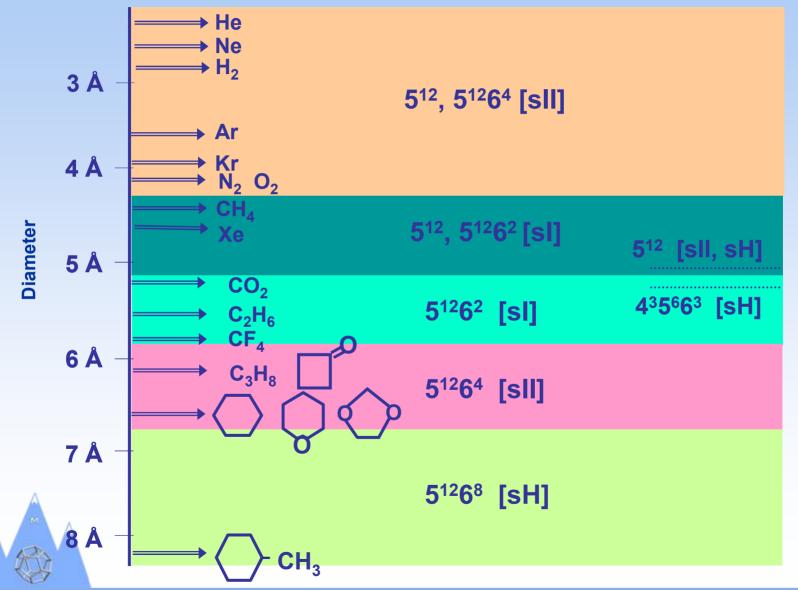
⇒ H₂ can stabilize a hydrate structure otherwise unstable ⇒ H₂/cyclohexanone hydrate


\Rightarrow First semi-clathrate formed with H₂

⇒No thermo promotion from hydrotropes



INTRODUCTION & MOTIVATION



What are Clathrate Hydrates...?

Molecular Sizes and Hydrate Structures

Gas Clathrate Hydrates

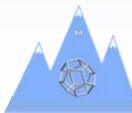
⇒Encapsulate small gas molecules (CH₄, C₂H₆, etc.)

Cause of pipeline blockage in natural gas/oil production

 \Rightarrow Potential future energy source (CH₄)

⇒ Concentrate large volume of gas \Rightarrow sII → ~170 m³ of gas (STP) per m³ of hydrate

H₂ in Hydrates

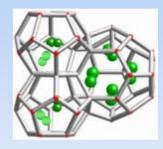

 $\Rightarrow '83 - Holder et al.: H_2 Rich Gases$ $\Rightarrow H_2 too small to contribute to hydrate stability$

 \Rightarrow '84 – Ng & Robinson: < 40% H₂ in gas \Rightarrow predicted H₂ enters the hydrate structure

⇒ '99 – Dyadin: H₂ and noble gases

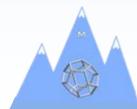
⇒ experimental hydrate decomposition P = 100-360 MPa

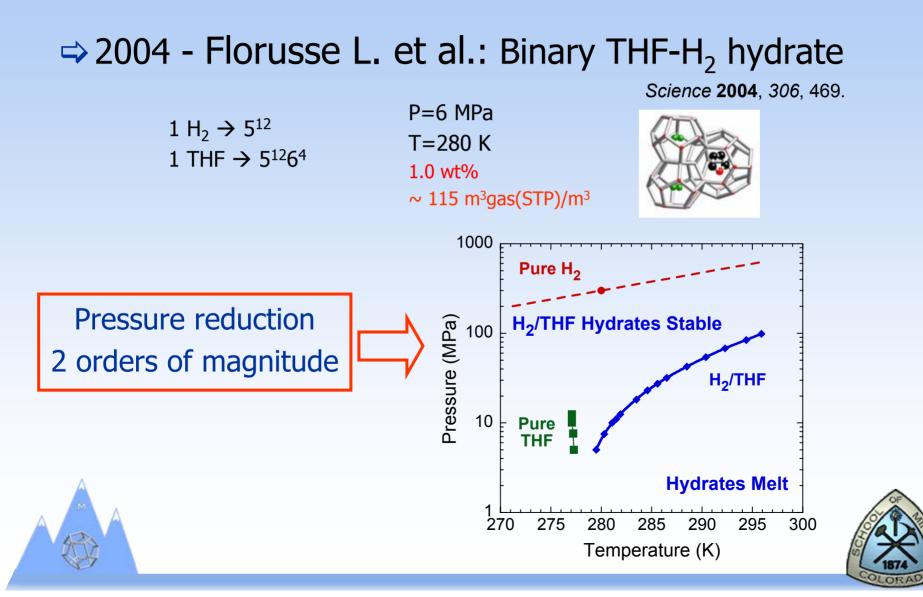
⇒ '00 – Guo et al.: H₂ and gas mixtures
 ⇒ Assumes H₂ to be a hydrate non former



Clathrate Hydrates Can Store H₂

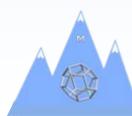
 \Rightarrow 2002 - Mao W. et al.: Pure H₂ hydrate . Science 2002, 297, 2247.


$2 H_2 \rightarrow 5^{12}$ $4 H_2 \rightarrow 5^{12}6^4$	P=200 MPa
	T=280 K
	5.0 wt%
	~ 460 m ³ gas(STP)/m ³

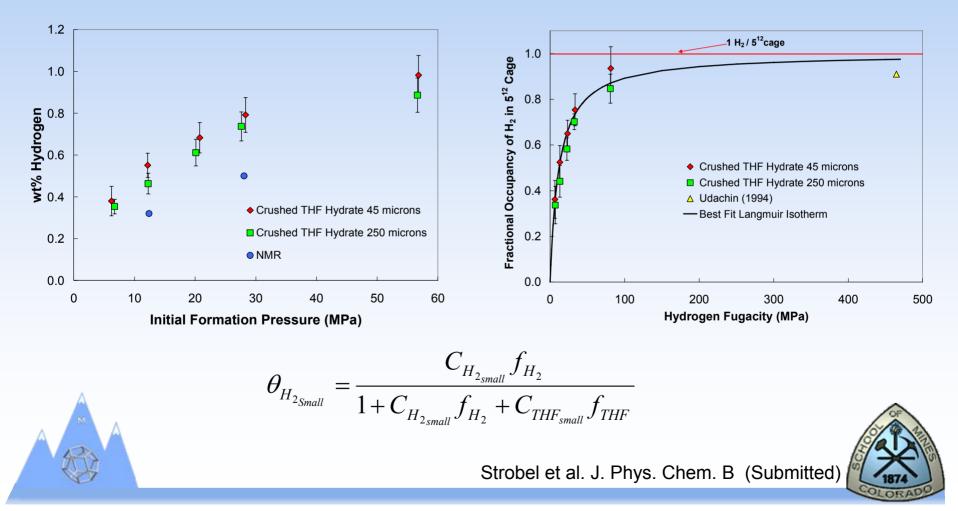

Potential storage medium for hydrogen

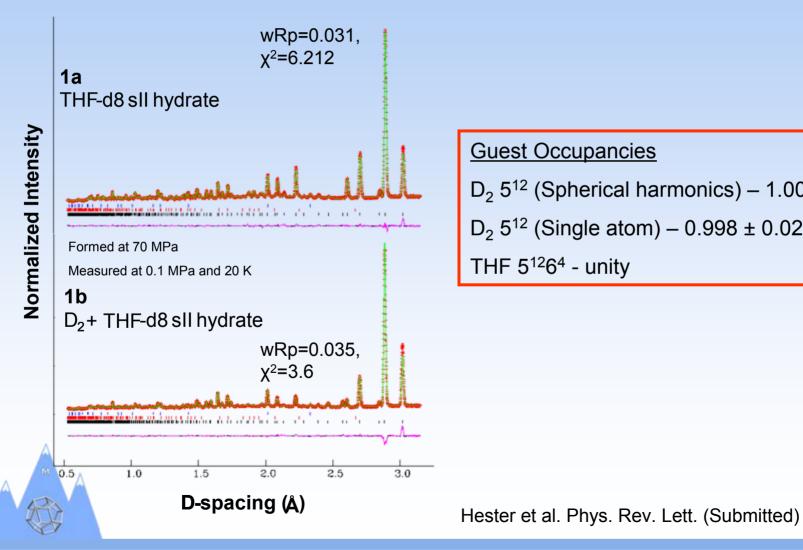
- \Rightarrow H₂O only by-product
- \Rightarrow H₂ is not bonded to the hydrate structure
- ⇒ No need of chemical reaction for gas release
- ⇒ Complete reversible
- ⇒ Fast Kinetics (formation and decomposition)
- ⇒ <u>Extreme formation pressures</u>

THF/H₂ Hydrate Stable at Much Lower P than Pure H₂ Hydrate


Scientific Impact

⇒ Discrepancy on cage occupancy


BINARY CLATHRATE HYDRATE RESULTS



Gas Release Measurements Confirms H₂ Storage in Hydrates

 \Rightarrow 1 wt.% H₂ in binary hydrate THF/H₂

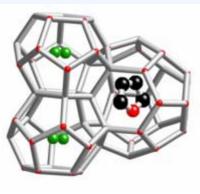
High Resolution Neutron Diffraction Confirms Single Occupancy of 5¹² Cages

Guest Occupancies

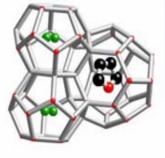
 $D_2 5^{12}$ (Spherical harmonics) – 1.003 ±.02

 $D_2 5^{12}$ (Single atom) – 0.998 ± 0.02

THF 5¹²6⁴ - unity



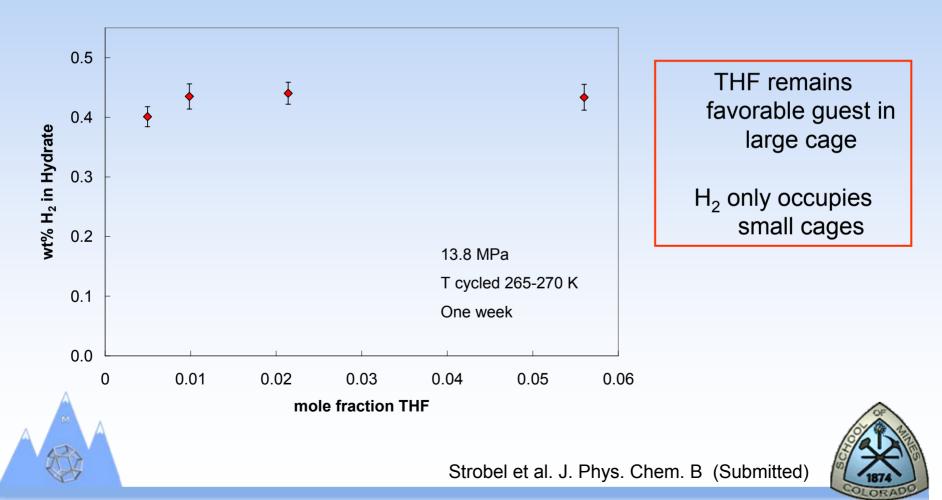
Manipulation of Cavity Occupancy


⇒ Can H₂ storage be increased by decreasing concentration of THF?

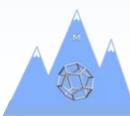
⇒ Can large cage THF occupancy be substituted for multiple H₂ molecules?

All large cages filled with THF

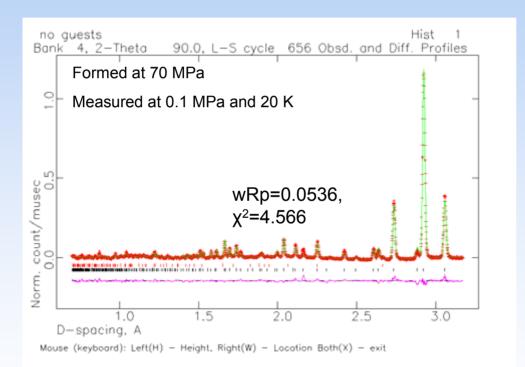
Some large cages filled with THF, balance filled with 4 H_2



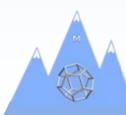
H₂ Storage is Independent of xTHF


⇒Gas release measurements

Cyclohexanone - Another Promoter Molecule

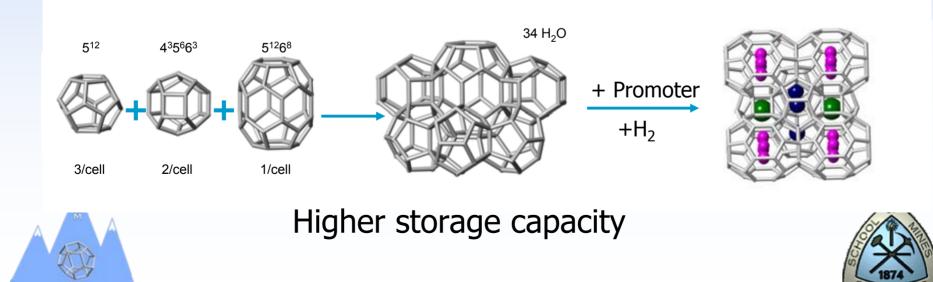

⇒No known pure CHone hydrate
⇒Requires a second guest, *cf*. cyclohexane, benzene

 Neutron diffraction studies on the binary Cyclohexanone-H₂ hydrate
 Confirm structure (sII or sH?)
 Hydrogen occupancy



Neutron Diffraction Confirms CHone-H₂ sII hydrate Structure & Occupancy

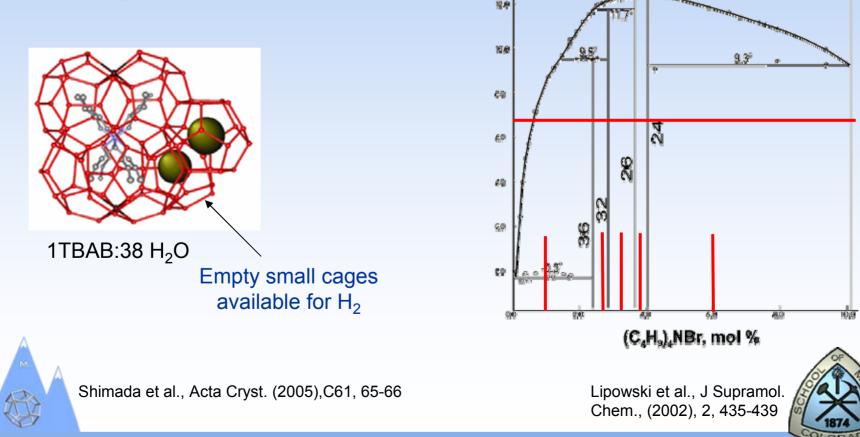
Guest Occupancies		
$D_2 5^{12}$ (Single atom) – 0.54		
CHone 5 ¹² 6 ⁴ - unity		



Implication of H₂ Stabilization Effect

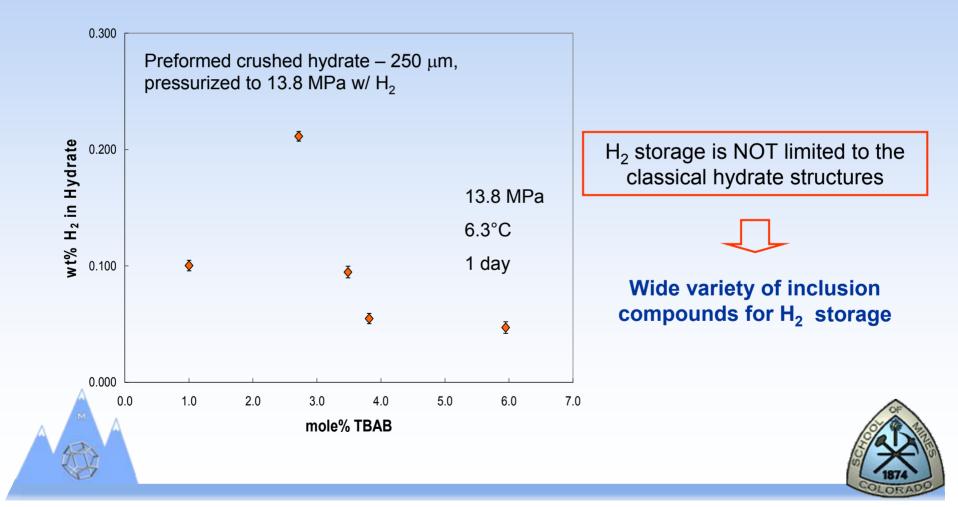
 \Rightarrow H₂ shown to stabilize sII lattice (otherwise unstable)

➡ Implication of hydrogen stabilizing other lattices that require a second guest, e.g. SH



TBAB-H₂O Phase Diagram and Structure

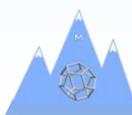
T, °C


TBAB-B semiclathrate – orthorhombic

4X.6Y.4Z X=5¹²6², Y=5¹², Z=5¹²6³ Tetra-n-butylammonium bromide

The First Semiclathrate H₂ Hydrate Discovered

⇒Gas release measurements for different hydration numbers

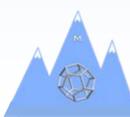

Accomplishments

⇒H₂ hydrate pressure reduced by 2 orders of magnitude with THF

 \Rightarrow H₂ is enclathrated in sII hydrate

⇒Storage capacity confirmed

- \Rightarrow Up to one H₂ per 5¹² of sII binary clathrate
- \Rightarrow H₂ storage independent of xTHF (at tested conditions)



Accomplishments

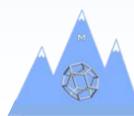
⇒ H₂ can stabilize a hydrate structure otherwise unstable ⇒ H₂/cyclohexanone hydrate

\Rightarrow First semi-clathrate formed with H₂

⇒No thermo promotion from hydrotropes

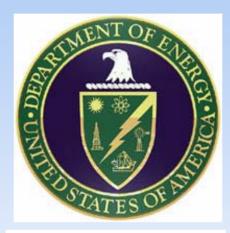
Publications

- T.A. Strobel, C.J. Taylor, K.C. Hester, S.F. Dec, C.A. Koh, K.T. Miller, E.D. Sloan Jr. *Molecular Hydrogen Storage in Binary THF-H₂ Clathrate Hydrates*. J. Phys. Chem. B. <u>Accepted</u>
- ➡ K.C. Hester, T.A. Strobel, A. Huq, A.J. Schultz, E.D. Sloan, C.A. Koh. Molecular Hydrogen Occupancy in Binary THF-H₂ Clathrate Hydrates by High Resolution Neutron Diffraction. Phys. Rev. Letters. <u>Submitted</u>
- L.J. Rovetto, T.A. Strobel, C.A. Koh, E.D. Sloan Jr. *Is gas hydrate formation thermodynamically promoted by hydrotrope molecules?* Fluid Phase Equilibria. <u>Submitted</u>
- Neutron diffraction studies of binary hydrates with H₂ and cyclohexanone. <u>In preparation</u>
- Hydrogen storage in semiclathrates with Tetra-n-butylammonium bromide. In preparation

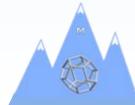

Future Work...

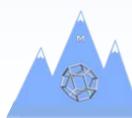
⇒ High Pressure Raman facility
 ⇒ Pure H₂ Hydrate
 ⇒ Formation and dissociation mechanism
 ⇒ Occupancy dependence on pressure

Search for new promoters
 sII and sH gas hydrates
 Other structures

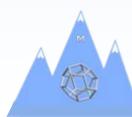

⇒ Self Preservation Studies

Slow dissociation rates of hydrates outside the stability region


Acknowledgements



Ashfia Huq Arthur Shultz Jim Richardson

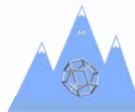


Questions? / Comments

Extra Slides

Overview

Timeline


⇒9/1/05 - 8/31/08
⇒20 % Complete

<u>Budget</u>

⇒ Funding received 9/05
 ⇒ \$ 250,000
 ⇒ 3 years

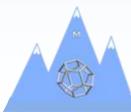
Interactions /Collaborations

⇒ Technical University of Delft
 ⇒ Argonne National Laboratory
 ⇒ IPNS

Work and Facilities

Our Approach to Study H₂ Hydrates

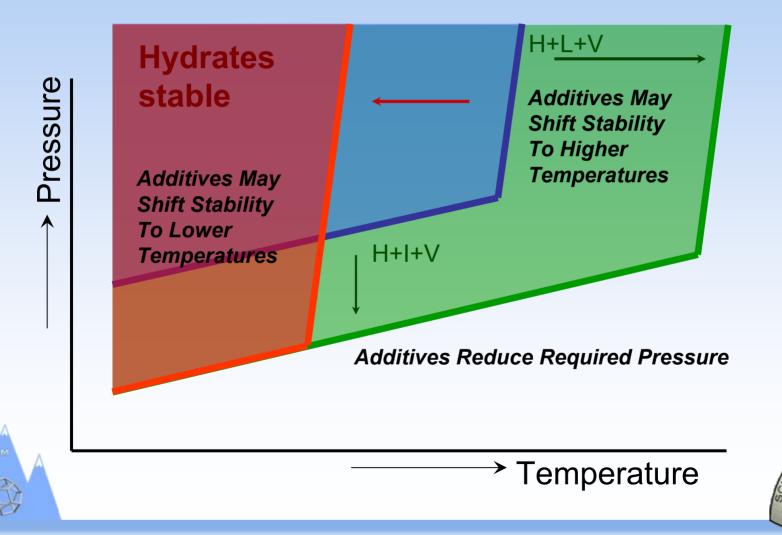
<u>Microscopic</u>

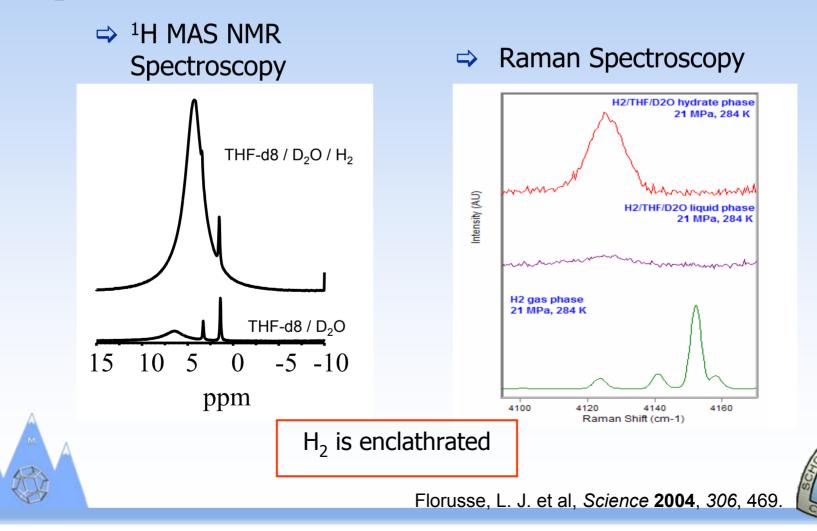

⇒ NMR
 ⇒ Raman
 ⇒ 60,000 psi
 ⇒ Neutron diffraction

Macroscopic

 ⇒Gas evolution
 ⇒Phase equilibria HP cell

Modeling

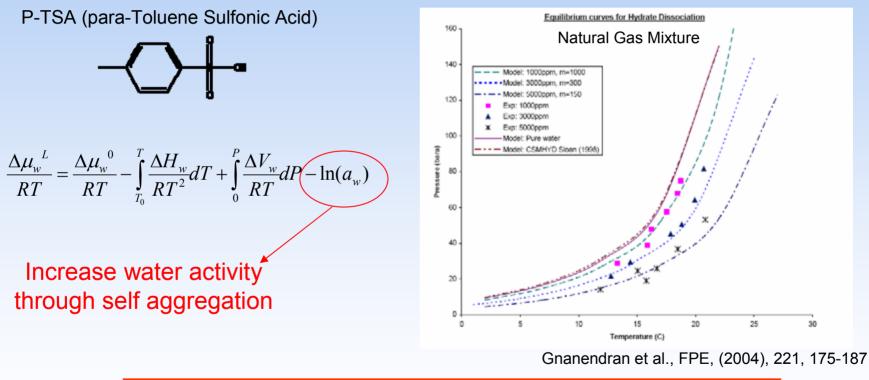

⇒In house model

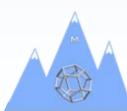

Stability of Gas Hydrates

⇒Additives as Inhibitors or Promoters

Binary THF/H₂ Hydrate Confirmed Using Spectroscopy

 \Rightarrow H₂ shown to occupy sII hydrate cages


Scientific Impact


⇒ Discrepancy on cage occupancy

Mao, W. L.; <i>Science</i> 2002, <i>297</i> , p 2247 5.0 wt %	Raman observations and phase volume ratio	~2k bar 234 K	Pure H ₂ Hydrate	2 H ₂ /small 4 H ₂ /large cage
Patchkovskii, S. et al, PNAS 2003 , 100, p 14645	DFT calculations	2k bar 250 K	Pure H ₂ Hydrate	2 H ₂ /small cage 3.96 H ₂ / large cage
Lokshin, K. A. et al, Phys. Rev. Lett, 2004 , p 125503 3.8 wt %	Neutron scattering	2k bar 180 K	Pure H ₂ Hydrate	1 H ₂ /small 2- 4 H ₂ /large cage
Sluiter, M.H., et.at. Materials Transactions, 2004 , pp 1452	<i>AB initio</i> calculations		Pure H ₂ Hydrate	2 H ₂ /small 4 H ₂ /large cage
Alavi, S., et.al. J.Chem.Phys, 2005, 123, p 024507	Molecular dynamic calculations	2.5k bar 100 K	Pure H_2 Hydrate	1 H ₂ /small 4 H ₂ /large cage
Alavi, S., et.al. J.Chem.Phys, 2005, 124, p 014704	Molecular dynamic calculations	120 bar 273 K	THF/H2 Hydrate	Similar Energy for 1 or 2 H ₂ /small
Lee,H. and Ripmeester, J. et.al, Nature, 2005 , 434, p 743 > 4 wt %	Raman, NMR, gas evolution	120 bar 270 K	THF/H2 Hydrate	2 H ₂ /small Decreased THF -> 4 H ₂ in some large cages

Hydrotropes and Gas Hydrates

⇒ Reported to promote hydrate equilibrium

Apply to pure H₂ hydrate

Reduce formation pressure w/o compromising storage ?

Hydrotropes Do Not Promote Gas Hydrate Formation

Natural gas mixture **Methane** 9 natural gas mixture-Jager 2001 8 pure CH4 Hydrate-Sloan 1998 natural gas mixture-this work CH4+p-TSA 2000ppm CH4+p-TSA4000ppm 7 natural gas mixture+5000ppm p-TSA × 6 CH4+p-TSA 62000ppm* CH4+p-TSA 138000ppm Pressure [MPa] Pressure [MPa] 5 3 4 2 282 284 286 288 290 292 294 275 276 277 278 279 280 281 282 Temperature [K] Temperature [K]

No thermodynamic promotion with hydrotropes No feasibility for H_2 hydrate

Rovetto et al. Fluid Phase Eq. (Submitted)