

1

Chemical Hydrogen Storage in Ionic Liquid Media

Larry G. Sneddon and R. Thomas Baker

University of Pennsylvania Los Alamos National Laboratory BES Hydrogen Review May 2006

Initial Objectives and Achievements

Initial Objectives:

- Quantify the hydrogen release and characterize the products of ammonia borane dehydrogenation
- Carry out comparison studies of ammonia borane dehydrogenations in the solid state versus in ionic liquid solvents
- Develop metal catalysts for ammonia borane dehydrogenations in ionic liquids

Summary of Initial Discoveries/Achievements:

- Toepler measurements, NMR studies and DFT/GIAO computations were used to identify the major species produced in ammonia borane dehydrogenations.
- Ionic liquids were found to improve the extent and rate of hydrogen release from ammonia borane.
- Ionic-liquid stabilized metal-catalysts show promise for further increasing the extent and rate of dehydrogenation of both ammonia borane and ammonia triborohydride.

Research Team: PIs, Larry Sneddon (Penn), R. Tom Baker (Los Alamos) Postdoctorals, Vincent Pons, Martin Bluhm

Why Amineboranes for Hydrogen Storage?

Because of their protonic N-H and hydridic B-H hydrogens, amineboranes are unique in their ability to store and release hydrogen

DOE Targets

2007: 4.5 wt%, 0.036 kg-H₂/L; **2010:** 6.0 wt%, 0.045 kg-H₂/L; **2015:** 9.0 wt%, 0.081 kg-H₂/L

DFT/GIAO/NMR Polymer Characterization

DFT/GIAO/NMR Polymer Characterization

NH₃BH₃ Decomposition at 85°C

¹¹B NMR spectra of the residue in pyridine

DRIFT-IR spectrum of residue after 67 hours Polyaminoborane $(-NH_2-BH_2-)_n$

- Ammonia Borane NH₃BH₃
- ★ BH_4^- (from diammoniate diborane, [(NH₃)₂BH₂]BH₄)
- ▲ BH_2^+ (from diammoniate diborane, [(NH₃)₂BH₂]BH₄)
- Polyaminoborane
- Unsaturated B=N

Why Ionic Liquid Solvents for Amineborane Dehydrogenations?

Ionic Liquid Solvents

Anions:

Reactive: AlCl₄⁻, Al₂Cl₇⁻

Inert: PF₆⁻, BF₄⁻, Cl⁻

Advantages

- Dissolve both neutral and ionic species, promote polar transition states
- Negligible vapor pressures
- Non-coordinating anions and cations provide polar, inert reaction medium for catalytic reactions.

Ionic Liquids Promote Polyborane Reactions TRADUCT of PERSONNELLICED Ideas That Change the World

Kusari. U.; Li, Yuqi; Bradley, M. G; Sneddon, L. G. J. Am. Chem. Soc. 2004, 126, 8662-3

-2003

[‡] 1-Butyl-3-methylimidazolium chloride 11

NH₃BH₃ / Ionic Liquid at 110°C

NH₃BH₃ + Ionic Liquid[‡]

¹¹B NMR spectra

1 hour – 1.45 eq. of H_2

16 hours – 1.30 eq. of H_2

- Ammonia Borane NH₃BH₃
- ★ BH_4^- (from diammoniate diborane, [(NH₃)₂BH₂]BH₄)
- A BH_2^+ (from diammoniate diborane, [(NH₃)₂BH₂]BH₄)
- Polyaminoborane
- Unsaturated B=N

[‡] 1-Butyl-3-methylimidazolium chloride

[‡] 1-Butyl-3-methylimidazolium chloride

lonic liquids accelerate the hydrogen release from NH₃BH₃!

Metal Catalyzed H₂ Release at 85°C

NU DU	catalyst		2 w U
INIT3DIT3		$\rightarrow DINT_X + 3$	$D - X \Pi_2$

No.	Solvent,	H ₃ NBH ₃	Catalyst	Total System	Τ	time	H ₂ rele	ased ^c	Complete H ₂
	wt [mg] ^a		[mg]	wt [mg]	[°C] ^ø	[h]	mmol	wt%	after 15h, wt%
1	BMI-CI,	8.1 mmol,	_	400	85	6	7.2	3.6	
	150	250 mg							
2	BMI-CI,	8.1 mmol,	-	450	85	6	8.1	3.6	
	200	250 mg							
3	BMI-CI,	8.1 mmol,	_	500	85	6	9.5	3.8	
	250	250 mg							
4	BMI-CI,	8.1 mmol,	-	500	85	8	10.4	4.2	
	250	250 mg							
5	BMI-PF ₆	8.1 mmol,	-	500	85	6	7.5	3.0	
	250	250 mg							
6	BMI-CI,	8.1 mmol,	Nanoscale Ni, 0.7	503.5	85	6	11.5	4.6	5.3 (1.62 eq)
	250	250 mg	mol%, 3.5						
7	BMI-CI,	8.1 mmol,	Ni(cod) ₂ ,	520	85	6	11.5	4.5	5.1 (1.63 eq)
	250	250 mg	0.9 mol%, 20						
8	BMI-CI,	8.1 mmol,	Nanoscale Pd,	507	85	6	11.6	4.6	5.1 (1.57 eq)
	250	250 mg	0.8 mol%, 7						
9	BMI-CI,	8.1 mmol,	Pd, 0.5 mol%,	504.3	85	6	12.0	4.8	
	250	250 mg	4.3						
10	BMI-CI,	8.1 mmol,	Pd, 2.5 mol%,	521.5	85	6	11.7	4.5	
	250	250 mg	21.5						
11	BMI-CI	16.2 mmol,	Pd, 2.5 mol%,	771.5	85	6	16.7	4.4	
	250	500 mg	21.5						
12	BMI-CI	16.2 mmol,	Pd, 2.5 mol%,	1021.5	85	6	21.4	4.2	5.2 (1.62 eq)
	500	500 mg	21.5						14

Metal Catalyzed H₂ Release at 85°C

No.	Solvent, wt	H ₃ NBH ₃	Catalyst	Total System	T	time	H ₂ rele	eased ^c	Complete H ₂
	[mg] ^a		[mg]	wt [mg]	[°C] ^ø	[h]	mmol	wt%	after 15h, wt%
13	BMI-CI, 250	8.1 mmol,	Pd, 10% on C,	520	85	6	11.5	4.5	
		250 mg	0.25 mol%, 20						
14	BMI-CI, 250	8.1 mmol,	Pd, 10% on C,	543	85	6	12.3	4.6	
		250 mg	0.5 mol%, 43						
15	BMI-CI, 250	8.1 mmol,	Nanoscale Pt,	512	85	6	10.9	4.3	5.1 (1.56 eq)
		250 mg	0.8 mol%, 12						· · ·
16	BMI-CI, 250	8.1 mmol,	(Ph₃P)₃RhCl, 0.5	537.5	85	6	12.3	4.6	
		250 mg	mol%, 37.5						
17	BMI-CI, 250	8.1 mmol,	Rh, 5% on Al, 0.5	582.3	85	6	11.1	3.9	
		250 mg	mol%, 82.3						
18	BMI-CI, 350	8.1 mmol,	[Rh(cod)(μ-Cl)] ₂ ,	620	85	6	12.3	4.0	
		250 mg	0.5 mol%, 20						
19	BMI-CI, 250	8.1 mmol,	$[Rh(cod)(\mu-Cl)]_2$	520	45	6	2.3	0.9	
		250 mg	0.5 mol%, 20						
20	BMI-CI, 250	8.1 mmol,	RuH ₂ (CO)(PPh ₃) ₃	531	85	6	12.2	4.6	5.1 (1.66 eg)
		250 mg	0.4 mol%, 31						
21	BMI-CI, 250	8.1 mmol,	Ru, 0.5 mol%, 4	504	85	6	12.0	4.8	5.2 (1.61 eq)
		250 mg							
22	BMI-CI, 250	8.1 mmol,	Ir(I) catalyst ^d , 0.5	532	85	6	11.7	4.4	4.8 (1.57 eq)
		250 mg	mol%, 32						
23	Mineral oil,	8.1 mmol,	_	500	85	6	3.4	1.4	
	250	250 mg							

^{*a*} BMI-CI: dry 1-Butyl-3-methylimidazolium chloride. ^{*b*} Oil bath temperature. ^{*c*} Hydrogen gas is collected in calibrated volumes using a Toepler pump. To avoid the collection of other gases and volatiles formed in these reactions, a nitrogen cooled trap is connected between the reaction flask and the pump system. ^{*d*} (Tricyclohexylphosphine)(1,5-cyclooctadiene)(pyridine)irridium(I) hexafluorophosphane.

Increased H₂ Release with Pd at 85°C

"System" = wt of H₃NBH₃ + Catalyst + bmimCl

[Rh] = [Rh(COD)Cl]₂ (COD=1,5-cyclooctadiene) bmim**Cl** = 1-butyl-3-methylimidazolium chloride bmim**OTf** = 1-butyl-3-methylimidazolium trifluoromethanesulfonate

Summary and Future Studies

Ongoing and Future Studies

Achievements

• The major species produced in the thermal decomposition of ammonia borane have been identified.

• Ionic liquids have been shown to increase both the extent and rate of hydrogen release from ammonia borane.

• Metal catalyzed reactions in ionic liquids have been shown to promote ammonia borane dehydrogenation.

• Investigate a wider range of ionic liquids for ammonia borane and ammonia triborohydride dehydrogenations.

• Elucidate the mechanisms of dehydrogenations in ionic liquids and determine the effects of chemical initiators.

• Use the ability of ionic liquids to stabilize nanoparticle metals to develop new metal-catalyzed dehydrogenation systems with improved rates of hydrogen release.