Basic Research for the Hydrogen Fuel Initiative

Control of Hydrogen Release and Uptake in Condensed Phases

Nancy Hess, John Linehan, Wendy Shaw, John Fulton, Luke Daemen, Maciej Gutowski, Tom Autrey

PNNL, LANL (LANSCE)

Pacific Northy

perated by Battelle for the

Presented at EERE Program Review 2006

Hydrogen-rich ammonia borane (AB)

... and on scaffolds

Ammonia borane in SBA-15

Scaffolds:

 enhance rates of H₂ release
enhance purity of H₂ (little borazine)
thermodynamics

Angew. Chem. Int. Ed. 2005, 44, 3578.

Summary of AB chemistry

Selectivity of H₂ release from AB

- No borazine seen in volatile products or left behind in scaffold.
- No cyclized products observed in NMR and DSC data show process is less exothermic
- Reactivity for H₂ release from AB

Office of

1-2 orders of magnitude faster!

Fundamental Questions

$NH_3BH_3 \rightarrow (NH_2BH_2)_n + H_2 + ? <100 ^{\circ}C$

How is the H_2 released?

Why is there an induction period? What is the role of the dihydrogen bond?

Can we control the decomposition pathways?

What materials catalyze hydrogen release?

Does the reaction proceed by ionic or neutral pathways? How does the scaffold interface change reactivity?

What is hydrogen doing <u>before</u> it is released?

Approaches

- Multi-nuclear NMR and Raman spectroscopy
 - Solid state to study phase transitions and molecular dynamics
 - Variable temperature for in-situ kinetic investigations
- Neutron spectroscopy
 - QENS (for dynamics of H motion)
 - INS (for structure and spectroscopic studies)
- EXAFS spectroscopy
 - Operando (in-situ) catalysis studies. Gives x-ray like data for structural studies of catalytic induced transformations.

Combination of experiment & theory to gain fundamental understanding of interactions between protic/hydric hydrogen

Molecular NH₃BH₃

► H₃B←NH₃ Electron donor-acceptor (dative) bond. The lone electron pair of NH₃ delocalizes over an unoccupied 2p orbital of B.

-Large dipole moment (5.3 D) illustrated by effective atomic charges: -0.46 (N), 0.27 (H(N)), 0.39 (B), -0.25 (H(B))

-the length of the dative BN bond 1.67 A. A barrier for rotation around the BN bond less than 9 kJ/mol

► The calculated dissociation energy for NH₃BH₃ → BH₃ + NH₃ is 109 kJ/mol. The dative BN bond is stronger than a hydrogen bond but weaker than a valence bond

Crystalline NH₃BH₃

- Synthesis by Shore and Parry in 1955
- Density 0.74 g/cm³, mp 124 °C, 19.5wt% H₂
- $NH_3BH_3 \rightarrow H_2 + polyaminoborane$ at < 100 °C.
- AB in equilibrium with diammoniate of diborane 2NH₃BH₃ ↔ [NH₃BH₂NH₃][BH₄]

•First order-disorder phase transition at 225 K, the low T structure is orthorhombic, the high T tetragonal

- •Electrostatic bonding between H⁺ and H⁻ (dihydrogen bond)
- •The calculated <u>cohesive energy</u> is 74 kJ/mol

Dihydrogen Bonds

Hydride atoms act as Proton acceptor

Soft vibration modes, where are they?

Klooster, et. al. JACS, 1999, 121, 6337 Picific Northwest National Laboratory U.S. Department of Energy 10

Vibrational studies of dihydrogen bonding

DEPARTMENT OF ENERGY

U.S. Department of Energy 11

Computational analysis of dihydrogen bonding

		Calculations on AB dimer (MP2)			FDS spectra at 10K			
		linear	cyclic			(tentative assignments)		
motion	mode	NH3BH3	NH3BH3	ND3BH3	NH3BD3	NH3BH3	ND3BH3	NH3BD3
molecular rock		52				59	64	53
rock		74				75	81	69
bend	Au		93	86 [-7]*	84 [- 9.5]	94 (+1)	87 [-8]	89 [-5]
						110		105
torsion	Bg		132	101 [-23]	117 [-11]	129 (-3)	99 [- 23]	125 [-3]
rock	Ag		150	139 [- <mark>8</mark>]	141 [-7]	152 (+2)	135 [-11]	147 [- 3]
torsion	Au		193	142 [-26]	168 [-13]	180 (-13)	158 [-13]	170 [-6]
stretch	Ag	122	204	201 [-2]	191 [-6]	211 (+7)	198 [-6]	202 [-4]
rock	Bu		242	224 [-7]	218 [-10]	261		218 [-17]
						(+19)		
torsion	Au	256	295	283 [-4]	241 [-18]	298 (+3)	269 [-10]	253 [-15]
						327		
torsion	Bg	284	327	304 [-7]	265 [-19]	350	317 [-10]	275 [-22]
	-					(+23)		
v(B-N)						764 (782)	725 (737)	756 (747)

 δ^{-} δ^{+} BH ----- HN

Dynamics of –BH₃ and –NH₃ motion in AB

²H nuclear magnetic resonance (D-NMR)

quasi-elastic neutron scattering (QENS)

Pacific Northwest National Laboratory U.S. Department of Energy 15

Rotational energy barriers

	Reynhardt and Hoon	Penner et al	PNNL NMR	PNNL QENS			
Solution							
E _a (kJ/mol)		11.7					
Orthorhombic				HFBS			
NH ₃ /ND ₃				NH ₃ BH ₃			
E _a (kJ/mol)	9.6	13.7 (ND ₃)	14.6 (ND ₃)	8 (NH ₃)			
BH ₃ /BD ₃				ND ₃ BH ₃			
E _a (kJ/mol)	25	25.4 (BD ₃)	22.7±2 (BD ₃)	21 (BH ₃)			
Tetragonal				DCS			
NH ₃ /ND ₃							
E _a (kJ/mol)		7.3 (ND ₃)	5.8 (ND ₃)				
BH ₃ /BD ₃							
E _a (kJ/mol)	5.9	5.9 (BD ₃)		4.7 (BH ₃)			
Gas phase	9						

Summary

NH₃BH₃: Strong electrostatic interactions between hydridic and protic hydrogens, however hydrogen is very mobile.

Goal: Understanding dihydrogen bonding interactions. How universal are these interactions in H storage materials?

 NH_xBH_x materials have both hydridic and protic hydrogen. These materials will react with itself or with other hydridic and/or protic hydrogen. E.g., MgH_2 --- H_3NBH_3 --- H_2NLi

What are thermodynamics of alternative reactions?

PNNL

Anna Gutowska **Yongsoon Shin** Liyu Li **Scott Smith Bruce Kay Don Camaioni Ashley Stowe** Abhi Karkamkar **Dave Heldebrant Greg Schenter** Shawn Kathmann **Andrew Lipton Paul Ellis Jesse Sears**

Contributors

LANSCE

Thomas Proffen Monika Hartl

NCNR

Craig Brown Terry Udovic Teresa Jacques Eugene Mamontov

Visitors

Benjamin Schmid (UO) Mark Bowden (IRL) Rene Schellenberg (TUBF)

This work was supported by the Office of Basic Energy Sciences of the Department of Energy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.