From fundamental understanding to predicting new nanomaterials for high capacity hydrogen storage

Taner VILDIRIM^{1,2} and J. E. Fischer²

¹NIST Center for Neutron Research, Gaithersburg, MD 20899 ²Department of Materials Science and Eng., University of Pennsylvania, Philadelphia, PA 19104

2006 DOE Hydrogen Annual Review BES Activities...

Add-on project to DE-FG02-98ER45701 (Duration:03/01/06 - 06/30/07)

We thank DOE (in particular Dr. Harriet Kung and Dr. Sunita Satyapal) for supporting this add-on project to get us working on this important field immediately...

Program Scope

We will focus on achieving fundamental understanding of the chemical and structural interactions governing the storage and release of hydrogen in a wide spectrum of candidate materials. The goals are:

To provide fundamental underatanding of how the most of the candidate materials (MOF's, alanates, destabilized chemical hydrides, etc) interact with H₂ chemically, structurally and energetically; and
To provide timely feedback and guidance from theory to *de novo* materials design and targeted syntheses throughout the DOE programs.

We expect that this new modeling initiative will have a major impact on the extensive experimental work at NIST, where senior staffs are coupled to essentially all of the EERE Centers of Excellence.

Outline

- Sievert Measurements in (P-T) plane What EOS to use?
- H₂ and CH₄ in MOF5
- MAGIC ROLE OF Ti in HYDROGEN STORAGE MATERIALS:

♦ Ti-doped Alanates

(see see cond-mat/0604472 (April, 2006). Appl. Phys. Lett. **86**, 103109 (2005) Phys. Rev. B 70, 060101 (R) (2004))

◆ Dynamics in Ti-SWNT and Ti-C₆₀
Phys. Rev. Lett. 94,175501 (2005)
Phys. Rev. B 72, 153403 (2005)

RE NiInH_x (x=1.333 and 0.666)

Details can be found at http://www.ncnr.nist.gov/staff/taner/h2

II. Hydrogen Adsorption Isotherms

In order to determine the hydrogen adsorption isotherms, we developed a fully computer-controlled Sieverts apparatus which works for a large range of pressures (P: 0-100 atm) and temperatures (T: 4 - 1500 K).

We found that in a volumetric method, the widely used vdW equation of state (EOS) is not accurate enough. To obtain reliable isotherms, the NIST-MBWR EOS should be used in the data reduction.

High pressure sorption/Sieverts expts: EOS matters

High pressure H2 isotherms in MOF5:

The lowest energy mode:

ω=2.66 meV

Description: All C_4H_4 -linker twist around crystal axis a, b, and c. It's single degenerate.

The 2nd lowest energy mode:

ω=3.21 meV

Description: Two of three C₄H₄linker twist around two crystal axes. It's 3-fold degenerate.

The 3rd lowest energy mode:

ω=3.77 meV

Description: All C_4H_4 -linker translate along crystal axis a, b, and c. It's 3-fold degenerate.

The breathing mode of ZnO₄-cluster:

ω=29 meV

Where does Hydrogen go in MOF5?

Please note that 1 $H_2/4Zn \rightarrow 0.255 \text{ wt\%}$ 1 wt% $\rightarrow 6 \text{ kg}$ H_2/m^3 (Liquid H_2 at 20.3 K has 70 kg H_2/m^3)

The difference Fourier Analysis of Neutron Powder Diffraction is an ideal way to locate the absorbed molecules in host lattice:

ρ (absorbed molecule) = ρ (host+molecule) - ρ (host)

Rietveld Refinement of 4H₂/4Zn in MOF5

Rietveld Refinement of the 8H2-4Zn MOF5 at 3.5 K

First Two Absorption Sites in MOF5 at 3.5 K

Rietveld Refinement of the 14H2-4Zn MOF5 at 3.5 K

Four Different Absorption Sites in MOF5 at 3.5 K

TABLE I: The calculated binding energies for four-adsorption sites when H_2 molecule is parallel and perpendicular to the 3-fold axis near the adsorption sites.

Hydrogen Nanocage Formation at high-loading 34 and 46D2-4Zn

Hydrogen Nanocage Formation at high-loading 34 D2-4Zn

Rietveld Refinement of the 46H2-4Zn MOF5 at 3.5 K

At high-concentration hydrogen loading, we observed 3D interlinked high-symmetry hydrogen nanocages with short intermolecular distances of 3.0 Ang.

III. CH₄ Adsorption Sites in MOF5

The isosurface of the difference-Fourier (DF) neutron scattering-length density superimposed with the ZnO_4 clusters of the MOF5 host structure, indicating the location of the first methane adsorption sites. This is a "direct measurement" (like taking a picture) of the methane molecules packed in the solid with a well defined orientation.

"Temperatue-dependent DF-neutron scattering" is further used to visualize the methane orientational dynamics with increasing temperature as shown on the right:

IV. Quantum Rotational Tunnel Splitting of CH₄

The rotational tunneling spectrum of CH_{4} -MOF5taken at DCS. The spectrum can be interpreted using a simple theory based on *a tunneling* around two 3fold axes...

The rotational barriers about the 3- and 3'-fold axes were found to be \sim 41 and \sim 22 meV respectively, as shown in the inset.

Magic Role of Ti in Hydrogen Storage Materials

Most research on hydrogen storage attempts to achieve practical goals based on classic interactions of **physisorption** (on high surface area materials) or **chemisorption** (complex metal hydrides).

Our concept is much simpler and more versatile. We propose to decorate light transition metals (TM) onto different molecules/nanostructures through <u>Dewar coordination</u> (hybridization of nanostructure LUMO orbitals with TM d-orbitals), which will then bind multiple molecular hydrogens *via* <u>Kubas interactions</u> (hybridization between H_2 - σ * antibonding and TM d-orbitals).

t80TiH₂

Dissociative Adsorption of a single H₂ over Ti-SWNT

LEFT: Energy versus the reaction path for the dissociative desorption of H_2 . H_2 first approaches to Ti, then it dissociates and then TiH₂ group rotates so that H comes over C atoms! See the animation. The binding energy is -0.832 eV per H₂.

t80TiH₂-3H₂ Strong adsorption of fourth H₂ over t80TiH₂!

LEFT: Energy curve as the fourth H_2 molecules approaches from top to TiH2 group (red arrow). The binding energy for the 4th H_2 is -0.335 eV, slightly different than the binding energy of the side H_2 molecules (which was 0.445 eV).

$C_{60}Ti(D)H_2$

Dissociative Adsorption of a single H₂ over C₆₀Ti(D)

Energy versus the reaction path for the dissociative desorption of H_2 . H_2 first approaches Ti while H-H bond distance increases to 0.9 A (near CG step 44), then Ti-H rapidly decrease to 1.75 A (near CG step 50) at which H2 starts to dissociate to form TiH₂ group (H-Ti-H angle increases from 35 to 117 between CG steps 50-80)! See the animation. The binding energy is -1.162 eV per H₂.

$C_{60}Ti(D)H_2-3H_2$ Molecular Adsorption of 3rd H₂ over C₆₀Ti(D)H₂-2H₂

Energy versus the reaction path for the molecular absorption of a third H_2 molecules on C60Ti(D)H2-2H2. The energy continuously drops as the H2 approaches Ti atom, with increasing bond length which is 0.852 A at the minimum configuration where Ti-H is 1.88 A. The binding energy for the third H2 molecule is -0.433 eV.

Ti-Cluster Formation! (Pure Jena *et al JACS 127, 14583, 2005*)

The authors compared the total energies of different structures and then jump to conclusion that the one with higher energy is not stable and tends to transform to the lowest energy structure!!!!

With the same logic, one then concludes that the expensive diamond that we got for our wifes should eventually transform to cheap graphite that we find in pencil because graphite has lower energy than diamond!!!!

CONCLUSION

We can not simply compared the energies of two phases to decide if one of the phase is not stable. Sometime thermodynamically favored (i.e. energetically most stable) phase is not observed because a phase with higher energy is kinetically favored...

Ti-Cluster Formation!

It's probably better to treat "TiH₂" on C_{60} rather than Ti-alone!

 TiH_2 on C_{60} does not jump to other minima, indicating very low segregation of TiH_2 on C_{60} !

No evidence of Ti-dimer formation from two nearest-neighbor TiH_2 groups on C_{60}

No clustering for C₆₀(TiH₂)₆ at high T!

NORMAL MODE ANALYSIS OF C60TiHx!

Vibrational spectra (neutron, Raman or IR) for different isomers of TiHx on C60 are different enough to characterize the samples which may have the proposed TiHx-bonding!!!

NORMAL MODE ANALYSIS OF C60TiH2!

Unusually Short Hydrogen-Hydrogen distance in LaNiInH_r

a combined first-principles and

neutron vibrational spectroscopy study

T. Yildirim, J. Iniguez, T. J. Udovic, V. A. Yartys,

PRB rapid comm. (in prep.)

LaNiInH_x MOTIVATION

•A recent neutron powder diffraction study of the $RNiIn-D_2$ systems (R = La, Ce, Nd) [J. Alloys Comp. 330-332 (2002) 132] showed an unusual double H occupancy in the trigonal bipyramidal R_3Ni_2 sites leading to the formation of hydrogen pairs with the shortest documented interatomic H···H separation (1.56-1.63 Å) for intermetallic hydrides, *raising several important fundamental questions and possible practical applications related to hydrogen storage*.

LaNiInH_x APPROACH

In order to understand the nature of bonding, structure and dynamics in these interesting intermatallic hydrides, RNiIn- H_v , we have performed

- Inelastic neutron scattering measurement for x=1.333 and 0.666.
- Performed first-principles structure and dynamics calculations for the following three systems:

LaNiInH_x STRUCTURE

	H2-H2	H2-0	H-H
a=b (Å)	7.425 (7.381)	7.451	7.472
c (Å)	4.689 (4.649)	4.515	4.472
V (Å ³)	223.87	217.03	216.57
Energy(eV)	xxx <	-11401.50	-11401.75

∆E=0.25 eV

The calculated atomic positions are also in perfect agreement with experimental values:

H= (2/3,1/3,0.3243 (0.3241) In=(0,0.2438 (0.2437),0) La=(0,0.6034 (0.6035), 0)

LaNiInH_x NATURE OF BONDING

Calculated charge density plot (left) and Mulliken analysis indicate that H atoms are bonded to Ni strongly and there is no H-H bond (covalent or ionic).

should NOT be considered as H-H pairs but rather as
considered as H-H pairs but rather as
pairs but rather as
1
NiH-pairs. This
explains the puzzle
of very unusual H-
H distance!

	H2-H2	H2-0	H-H
Q(La)	1.35 e	1.19 e	1.25 e
Q(In)	-0.48 e	-0.49 e	-0.52 e
Q(Ni1)	-0.53 e	-0.54 e	-0.55 e
Q(Ni2)	-0.35 e	-0.36 e	-0.46 e
Q(H)	-0.34 e	-0.32 e	-0.35 e
d(Ni—H)	1.521 (bp=0.38)	1.510 (bp=0.4)	1.621 (bp=0.53)
d(H—H)	1.647 (bp=0)	1.495 (bp=0)	

Lattice Dynamics from First-Principles

(2) H2-0 (LaNiInH_{0.666})

 $\omega = 1903 \text{ cm}^{-1}$

 $\omega = 1719 \text{ cm}^{-1}$

LaNiInH_x CONCLUSIONS

•We have carried out neutron scattering measurements on LaNiInH_{1.333} and LaNiInH_{0.666}

•Both INS spectrum and calculations suggest that in LaNiInH_{0.666}, H atoms are on different sites.

•Charge and bond-population analysis indicate that the bonding in these interesting system is a combination of ionic and covalent. There is a little H—H chemical bonding (if any)!

•Vibrational spectrum shows only the modes where H vibrates in the ab-plane. Somehow the high-energy vibrations along the c-axis are missing (probably due to anharmonic behavior which results in large rms displacement, and therefore large temperature-factor)! •Comparison between experiement and calculations indicate that the force constant between H—H is about 10% of the Ni-H force constant.

Future Work

•Major emphasis will be placed on fundamental issues, such as understanding the mechanism of hydrogen interaction in different candidate materials, by employing a powerful combination of first-principles modeling and closely coordinated neutron scattering experiments to develop and test intermolecular potential surfaces, etc.

•A major focus will be on nanoscale materials and the practicality of exploiting metastable states, in contrast to traditional theory which goes to great lengths to avoid local minima in atomic configuration energies. This approach is much more consistent with the manner in which many of these materials are synthesized, e.g. ball-milling to realize Ti-doped alanates, in which high energy nonequilibrium methods are a prerequisite to obtain the targeted phase.

•Theory and experiment will be done under the same roof...

Acknowledgement

The work described here were done in collaboration with

T. J. Udovic (NIST), C. M. Jensen and M. Sulic (Hawaii) (Alanate INS) J. Iniguez (former postdoc, Spain– Alanates, Ti-SWNT,Ti-C₆₀) Prof. S. Ciraci's group at Bilkent, Ankara, Turkey (Ti-SWNT,Ti-C₆₀) M. Hartman (for H₂-MOF study) W. Zhou (High-pressure sievert, MOF, CDC, etc) V. A. Yartys (*Inst. for Energy Technology, Norway*) for LaNilnH_x

METAL COATING OF CARBON NANOTUBES

•Stable metal nanowires are very important for nano-electronics and other nano-device applications.

•It has been shown that such nanowires can be produced by depositing metal atoms on SWNT templates (Y. Zhang *et al.* Phys.Lett. **77**,3015 (2000), Chem. Phys. Lett. **331**, 351 (2000)).

TEM image of Ti-coated SWNT

WHAT IS THE BONDING MECHANISM!

The mechanism is very similar to Dewar, Chatt, and Duncanson model, where the interaction is viewed as a donation of charge from the highest occupied orbital of the ligand to the metal empty states and a subsequent back donation from filled d-orbitals into the lowest unoccupied orbital of the ligand.

Question 2: Where does the Ti go?

Schematic showing the three definitions of adsorption: Absolute, Excess and Effective adsorption.

The absolute adsorption is the total amount of gas introduced to the sample cell minus the amount outside the sample in the gas phase, thus it accounts for the total amount of adsorbate molecules residing in pores.

The excess adsorption is the absolute amount of gas contained in the sample pores less the amount of gas that would be present in the pores in the absence of gassolid intermolecular forces.

Effective adsorption is the net gain of the amount of gas stored in a container by using an adsorbent material.

Hydrogen spill-over at high T and H-loading!

- 1. It's premature to discuss the technical problems such as dimerization!
- 2. The predicted Ti-H interaction is so unique, it alone deserves more attention regardless it is useful or not for hydrogen storage.
- **3.** Main focus should be to realize an experimental system which demonstrates such a unique Ti-H bonding that we predict!!!

