Atomistic Transport Mechanisms in Reversible Complex Metal Hydrides

Peter Sutter (psutter@bnl.gov) Brookhaven National Laboratory Upton, NY 11973

Brookhaven-Rutgers BES Hydrogen Team

BNL: P. Sutter, J. Muckerman
E. Sutter, J. Graetz, J. Reilly, J. Wegrzyn,
E. Muller, J.I. Flege, S. Chaudhuri.
Rutgers University: Y. Chabal, J.F. Veyan.

Outline

Atomistic Transport Mechanisms in Reversible Complex Metal Hydrides

- 1) Introduction: Objectives & Approach
- 2) Examples of Activities & Findings
- 4) Future Plans
- 5) User Facilities at BNL

Doped Sodium Alanate - Key Issues

NaAlH₄
$$(1/3 \text{ Na}_3 \text{AlH}_6 + 2/3 \text{ Al} + \text{H}_2 (1/3 \text{ Na}_3 \text{AlH}_6 + 2/3 \text{ Al} + \text{H}_2 (1/3 \text{ Na}_3 \text{Al} + 3/2 \text{ H}_2 (1/3 \text{ Al} + 3/2 \text{ H}_2 (1/$$

I. Fundamental questions: doping \Leftrightarrow reversible H-storage?

- **Q1:** Role of Ti catalyst in H₂ dissociation?
- Q2: Primary carrier(s) of mass transport?
- **Q3:** Fundamental kinetic factors governing reaction rates?

II. Enhancing kinetics in other hydride systems?

Q4: Effects of substitution in mixed metal hydrides? Re-hydrogenation of bulk alane?

Surface Studies of Re-Hydrogenation Reaction

Elementary reaction steps (at surfaces)

- **①** Ti catalyzed H_2 dissociation on depleted material (AI)
- **2** Formation of mobile species & mass transport.
- **3** Solid state reaction & ordering.

Model system for atomic-level surface studies.
Unprecedented level of interaction with theory.

Research Team

Nanoscale surface imaging [P. Sutter, BNL]

Scanning tunneling microscopy

- *atomic scale* structure.

Low-energy electron microscopy

- surface dynamics & mass transport.

Ab-initio theory & modeling [J.T. Muckerman, BNL]

Density functional theory

- *atomic scale* structure & energetics. **Ab-initio molecular dynamics**

- surface dynamics.

Quantitative spectroscopy [Y.J. Chabal, Rutgers]

FT-infrared reflection spectroscopy

- hydrogen containing adsorbates.
- surface dynamics & mass transport.

Synchrotron & TEM techniques [J. Graetz, E. Sutter, BNL]

XRD, EXAFS

- bulk synthesis, structure, bonding. Analytical electron microscopy

- nanoscale structure & composition.

Significant findings to date:

1) Ti-catalyzed H₂ dissociation:

- Local Ti environment similar to TiAl₃ with split AI shell at ~2.8 Å (EXAFS).
- Ti has reduced coordination near-surface sites.
- Ti atom pair complexes on Al(001) surfaces that spontaneously dissociate H₂ (DFT).
- Key feature: nodal plane of surface/H₂ HOMO midway between Ti atoms.
- Dissociated H-atoms cannot diffuse to all-Al site on flat Al(001).
- Spectroscopic STM: Ti resides in near-surface sites & interacts with H₂.

2) Formation of mobile species (surface alanes):

- Bulk materials: stoichiometric mixtures of NaH & AlH₃ react to NaAlH₄ (w/o Ti!).
- Atomic-H on AI: clear IR signatures of ad-AI-H, AIH₃ & higher oligomers.
- Atomic-H on AI: step-etching & alane evolution.
- High Ti concentrations: alane formation inhibited \rightarrow inactivation of Ti dopant.

3) Bulk materials:

- "Elpasolite" mixed alkali alanates: K₂LiAlH₆, K₂NaAlH₆ reversible without Ti.
- No cation mixing on the same site: No tuning of thermodynamics by substitution.

1) Ti-Catalyzed H₂ Dissociation - Predictions

Ti:Al complexes on Al(001): H₂ dissociation

(Density functional theory)

Unit cell (top view)				
Property	Model 3	Model 4	Model 4s	Model 8
Ti Coverage	0.25 ML	0.25 ML	0.25 ML	0.5 ML
Site ∆G _f * (eV)	3.13	2.08	1.65	1.04
E _a (eV)	0.89	0.00	0.26	1.62
Site $\Delta G_f + E_a$	4.02	2.08	1.91	2.66

*Reference state: Stable (001) surface of $TiAl_3$ alloy.

Incoming $H_2 \sigma^*$ receives electron density from Ti d-orbitals.

Active sites: nodal symmetry of surface/H₂ HOMO. **Other model sites: large activation barriers.**

J. Phys. Chem. B <u>109</u>, 6952 (2005).

Ti/Al(111) Model System

Ti deposition on Al(111) - STM Clean Al(111)

0.25 ML Ti/Al(111)

Ti distribution?

- In nucleated islands?
- Uniformly embedded?
- At surface?
- In sub-surface layers?

FOV: 80 nm. Ti/Al(111) deposited at 400 K.

Ti/Al(111) Model System

Ti deposition on Al(111) - STM

 Θ^{Ti}_{nom} = 0.05 ML

 $\Theta^{\mathrm{Ti}}_{\mathrm{nom}}$ = 0.3 ML

Strong spectroscopic contrast, absent on Al(111). Identification: STM & DFT.

Randomly dispersed near-surface Ti. Some **clustering/ordering** at higher coverage.

• H₂ dissociation on these sites?

FOV: 23 nm. Ti/Al(111) deposited at 400 K.

Office o

2) Formation of Mobile Species - Surface Alanes

FT-IR Spectroscopy - atomic H/AI(111)

Hydride/alane related IR modes:

- **A** Terminal (v_{H-T} = 1895 cm⁻¹): Ad-Al-H.
 - Bridging (v_{H-B} = 1500 cm⁻¹ 1800 cm⁻¹): higher alanes: Al₂H₆, Al₃H₉, etc.
- S Additional mode at low coverage: Ad-Al-H at step edges?* *Go et al., Surf. Sci. <u>437</u>, 377 (1999).

Or: signature of small alanes?

Progressive formation of **surface alanes**.

Sample: Al(111) single crystal. Atomic-H from W-filament; T = 90 K; H_2 dose: 10 L to 720 L; about 1% atomic-H

Atomic-H on Al(111)

STM Imaging

- Pronounced etching of surface steps.
- Evolution of population of adsorbates: $IR \Rightarrow$ surface alanes.

*<1% atomic H FOV: 120 nm T = 300 K

Atomic-H on Al(111)

STM Imaging - Spectroscopic contrast

- Step etching.
- Evolution of surface alanes.

Spectroscopic identification: STM tip functionalization.

- a Clean W-tip.
- **b** Alane-"functionalized" tip.

FOV: 150 nm. Sample: Al(111). Atomic H: ~ 4 ML H, T = 200 K.

Office of

Alane Formation on Ti/Al(111)

Atomic-H on Ti/Al(111)

 Θ^{Ti} = 0.05 ML Pronounced alane evolution.

 Θ^{Ti} = 0.25 ML No step etching. No evolution of surface alanes.

But: New electronic signatures 0.05 Å 'protrusions'.

High Ti coverages: near-surface Ti strongly binds Al.

 \Rightarrow Saturation effects at high Ti concentrations. \Rightarrow Incomplete re-hydrogenation: residual Ti-rich Al grains?

FOV: 20 nm 0.25 ML Ti/Al(111) ~ 4 ML H, T = 200 K.

Future Plans

Near Term Objectives:

- 1) Identify stable near-surface Ti:Al structures & active complexes for H₂ dissociation (Spectroscopic STM, DFT).
- 2) Quantify H₂ dissociation by Ti:Al (STM, IR, DFT).

Future Research - all based on strong interaction experiment-theory

- 3) Establish kinetics of alane formation (T-dependent STM, IR).
- 3) Compare & quantify AI and $(AIH_3)_x$ mass transport (real-time LEEM).
- 4) NaH/AI: Kinetics of re-hydrogenation to Na₃AIH₆ (LEEM).
- 5) Test concepts using bulk synthesis and characterization.

Fundamental understanding of Ti-catalyzed reversible hydrogen storage in sodium alanate.

Design rules for new reversible hydride materials.

BNL - Center for Functional Nanomaterials

www.cfn.bnl.gov

One of five new DOE Nanoscale Science Research Centers, **"The Nation's Premier Scientific User Facilities for Interdisciplinary Research at the Nanoscale".** Initial operations: April 2007; Full operations: April 2008.

Now accepting user proposals!

Office o

BNL - Center for Functional Nanomaterials

www.cfn.bnl.gov

Proximal Probes Peter Sutter

Theory & Computation *Jim Davenport*

NSLS Ron Pindak

Ultra-fast Optical Sources *Alex Harris*

Nano-Patterning

Chris Jacobsen, SBU

John Warren

Electron Microscopy Yimei Zhu

BNL - National Synchrotron Light Source

www.nsls.bnl.gov

NSLS

