In Situ NMR Studies of Hydrogen Storage Systems

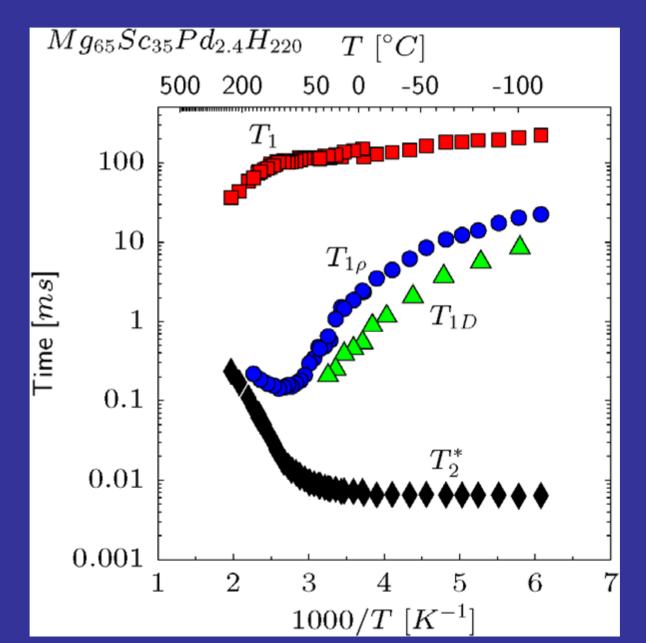
- Mark S. Conradi¹
- Robert C. Bowman, Jr.²
- Tim Ivancic¹
- Michael P. Mendenhall¹
- Peter H. Notten³
- W. P. Kalisvaart⁴

- ¹Washington University, Physics, St. Louis, MO
- ²Caltech and Jet Propulsion Lab Pasadena, CA
- ³Philips Research Lab, Eindhoven, NL
- ⁴Technical University Eindhoven, NL

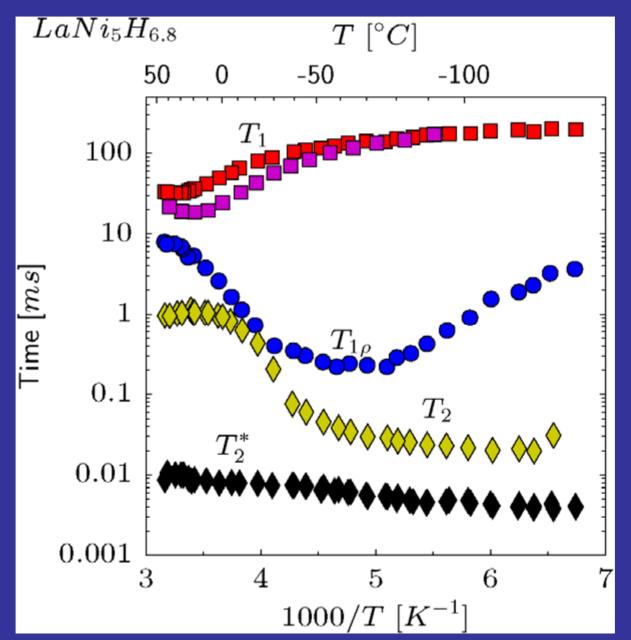
Mg-Sc Alloy Hydride – Rationale

- MgH₂ has high H content (8 wt%), ionic bonding, very slow kinetics.
- ScH₂ has lower H content (4 wt%), metallic character, better kinetics, very low equilibrium pressure (1 Torr at 740 C).
- Mg-Sc alloy embodies some of each: good reversible H content, over 2 H per metal, 6.7 wt%, fluorite structure of ScH₂, adequate kinetics, low P_{eq} (~10⁻⁷ atm at R.T.) may not be issue for electrochemical applications.
- Problem: MH batteries with thin film Mg-Sc electrodes show slow kinetics, even with Pd overlayer.
- Is it a surface effect? Is it slow bulk diffusion?

NMR Relaxation Time Measurements


Spectrometer: Home-built, 4-phase transmitter with 80 W output, quadrature-detected receiver.

Samples: Synthesized and loaded with H₂ gas at TUE by WPK in Netherlands. Sealed into glass NMR tubes.


Sequences:	
T ₁	from 180-τ-90 and (90-t) _n -τ-90
T ₂	from free induction decays, 2-pulse echoes,
	and CPMG echo trains.
T ₁₀	from CW (not chopped) spin-locking.
Τ _{1ρ} Τ _{1D}	(T ₁ of dipolar-ordered state, essentially T ₁ in zero field) from phase-alternated Jeener-Broekaert:
	90 _{x,-x} -t-45 _y -τ-45 _y .

All measurements at 53 and 21 MHz in Varian iron-core electromagnet.

Results for Mg₆₅Sc₃₅Pd_{2.4}H₂₂₀

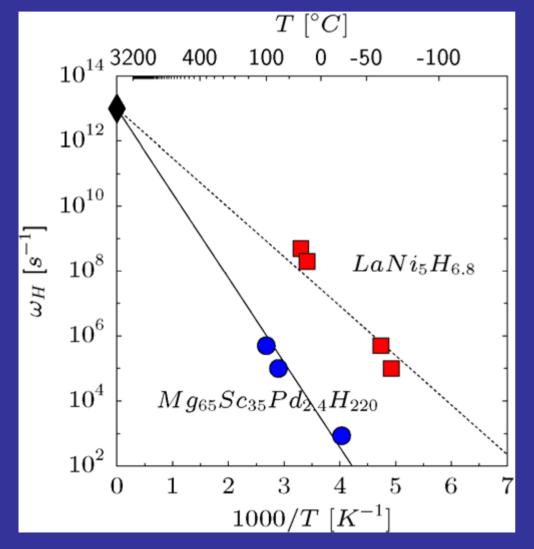
For Comparison: Results in LaNi₅H_{6.8}

Guide to Interpreting NMR Results $\omega_{\rm H} \equiv$ rate of H hopping motion

- Motional averaging of local dipolar fields is evident as increase of T_2 with temperature.

At onset, $\omega_{\rm H} \sim 10^5 \, {\rm s}^{-1}$ (approx. the low-T linewidth).

- At $T_{1\rho}$ minimum, $\omega_H \sim 5 \times 10^5 \text{ s}^{-1}$ (about 1.6 γB_1).
- At T_1 minimum at 21 MHz,


 $ω_{\rm H} \sim 2 \times 10^8 \text{ s}^{-1}$ (about 1.6 γB₀).

• T_{1D} is approx the mean time between hops, $T_{1D} \sim 1/\omega_H$, a strong-collision result. Notes:

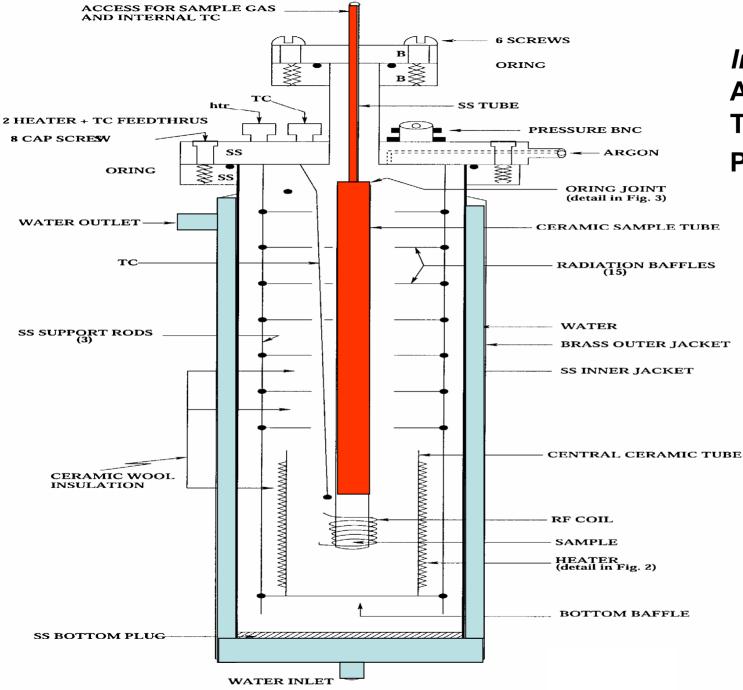
In MgScH_x, could not reach T₁ minimum. After 1 hour at 300 C, irreversible changes in alloy occurred.

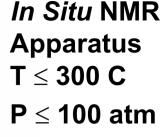
In LaNi₅H_x, magnetic precipitates (presumably Ni) distort field uniformity and keep T₂ of FID very short (~10 μ s).

Relaxation Map – Compares ω_{H} in MgScH_x and LaNi₅H_{6.8}

Fit is to $\omega_{\rm H} = 10^{13} \, {\rm s}^{-1} \, \exp((-{\rm E}_{\rm a}/{\rm k})/{\rm T})$

Activation energies: MgScH_x $E_a/k = 6000 \text{ K}$ LaNi₅H_x $E_a/k = 3500 \text{ K}$


Here we have taken ω_{H} to be 10^{13} s^{-1} at T = ∞ , providing us an extra datum point.


MgScH_x Conclusions

- Rate of H hopping, ω_{H} , is same in two systems only for much higher temperature in MgScH_x.
- At same temperature, motions in MgScH_x are \cong 3000× slower than in LaNi₅H_x.
- This explains slow kinetics seen in battery charge/discharge with ${\rm MgScH_x}$ thin film electrodes
- Future:
- Examine Mg-Ti alloy hydride. Made as thick thin-film, so limited quantity available, so use microcoil and high B_0 field.
- Vary Mg:Sc ratio to see effect on H kinetics. Is fluorite-rutile transition near 80% Mg the primary controlling factor?
- Try deuterium magic-angle spinning (MAS-NMR) to resolve distinct resonances for distinct hydrogenic sites.

The New Breed of H₂ Storage Compound

- Interstitial metallic hydrides show rapid diffusion, but wt% storage is inadequate.
- NaAlH₄, LiBH₄ imides and amides have covalent and ionic bonding.
- Where are the mobile species? How does H get out?
- Especially during rehydride: NaH + AI + 3/2 H₂ → NaAlH₄. But how? Where are mobile AI, Na species?
- In situ NMR is measured at rxn conditions. Not ambient-NMR on samples recovered from rxn.
- Need T \leq 300 C and P \leq 100 atm.
- Unlikely to do magic-angle spinning (MAS-NMR) at these rxn conditions. But we can *complement* static-sample *in situ* NMR with MAS-NMR on recovered material.

Future Plans for In Situ NMR

• NaAlH₄

look for mobile H species, distinguish by long T_2 , so "last remaining signal".

- Sc-catalyzed NaAlH₄
 Sc-45 is much better for NMR than Ti-47 and Ti-49.
- Look with MAS-NMR at Caltech (14 Tesla) at Sccatalyzed NaAlH₄.
- Build version of *in situ* NMR for high-field (8.4 T) and "metal" atoms: ²³Na, ²⁷Al, ⁷Li, ¹⁵N.