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Hydrogen Storage: Challenges

Our Goals:
• Increase storage capacity
• Speed up transport (hydriding

and dehydriding time)
• Study thermodynamics (to 

increase efficiency and improve 
thermal management)

• Study heat transfer
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•• HyridingHyriding reaction:             reaction:             
~1 MW for 5 min. ~1 MW for 5 min. 

•• Excessive temperature Excessive temperature 
rise suppresses  rise suppresses  
hydridinghydriding reaction.reaction.

Heat Transfer Issues



Binding Energy Range
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Benefits of Nanostructures

• Increase kinetics: diffusion time ~ radius square/diffusivity
• Possibility of co-existence of chemi- and physi-sorption
• Possibility of changing thermodynamic properties

• Yang’s Equation:
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• Kelvin Theory:
For multiphase system, transition 
temperature, equilibrium pressure 
and enthalpy of reaction change 
with radius.
For hydride, we can expect similar 
dependence in release temperature, 
equilibrium pressure and enthalpy of 
formation.



Proposed Approaches

• Destabilize materials: nanostructures synthesized by laser pyrolysis
• Combinatorial synthesis: search large phase space
• Nanostructures for both chemi- and physi- sorption coexistence
• Size effects: to modify thermodynamics and transport
• Address thermal conductivity reduction at nanoscale

Key Strategies:



Teaming and Interactions

• G. Chen, mass and heat transport, thermodynamics
• M.S. Dresselhaus, electronic structure, physisorption
• C. Grigoropoulos, characterization, fabrication
• S. Mao, characterization
• X.D. Xiang, combinatorial synthesis
• T.F. Zeng, nanoporous structures

Collaboration

Team Members:

• Group meetings, Weekly at MIT and Berkeley
• Team meetings: physical (2) and teleconference (4)
• Individual visits, students exchanges 
• Exchange of reports, meeting notes and research 

advances occurring elsewhere
• Daily email communication



Materials 
Fabrication

Combinatorial Material Screening

Series Process vs. Parallel Process
(one at a time) (up to a thousand at a time)

Proof of concept

Science 268, 1738 (1995).

Metal and complex hydride materials



Combinatorial Nano-particle Discovery EngineTM (CNP)

Capable of synthesizing nano-particles 
of metals, metal alloys and hydrides 
Reproducible high crystalline quality 
nanoparticles synthesized with narrow 
size distribution (< ±30%)
Controllable process for combinatorial
synthesis of nano-particle libraries with 
adjustable parameters:

particle size 
material composition 
synthesis conditions 

Equipment at Intematix



Library of Nanoparticles with Narrow Size Distribution
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Start: Mg-X-Y System

High hydrogen storage capacity (MgH2, 7.7 wt% H2) 
Hydrogen release temperature (Tr) (1 atm H2 at 300°C) provides 
enough range in Tr for destabilization while Tr is not too high for direct 
dehydrogenation
Example: Literature shows some improvement by Ni destabilization
(Mg2Ni, 2.5-3.2 atm H2 at 300°C)

Selected Candidates for X, Y



Mg-Ni Metal Hydride Library
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• Synthesized silica aerogel with surface area 1,100 m2/g

• Modified a well established aerogel synthesis route to prevent 
MgH2 decomposition

• Incorporate nanoscale catalyst into aerogel

• Also used laser to deposit MgNi into aerogel

MgH2 in Aerogel Form
• Incorporation of MgH2 into a nanoporous silica aerogel

increases diffusion and prevents particle sintering

• Possibility of simultaneous chemi- and physi- sorption

Pure 
aerogel

9wt% 
MgH2
aerogel

9wt% MgH2
with 0.4wt% 
Al aerogel

Pure 
aerogel

9wt% 
MgH2
aerogel

9wt% MgH2
with 0.4wt% 
Al aerogel

NCSU 20nm

Ni nanoparticles



Screening of Combinatorial Library

• X-ray analysis
• Infrared Imaging
• Pump-and-Probe
• Cantilever Arrays
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Change in natural frequency 
of oscillation offers direct 
measurement of hydrogen 
intake.



IR Imaging

Berkeley



Pump-and-Probe Technique

Properties of interest: (a) thermal conductivity, (b) specific heat
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Differential Scanning Calorimetry

MgH2
aerogel

468.9 oC

MgH2 + 
catalyst 1 
aerogel

475.3 oC MgH2 + 
catalyst 2 
aerogel466.8 oC

MgH2 + 
catalyst 3 
aerogel

456.3 oC

Study of enthalpy of formation 
and activation temperature for 
different catalysts 

Commercial MgH2 Particles



X-Ray (Synchrotron) Spectroscopy

• Resonant Inelastic X-ray Spectroscopy (RIXS) 
used to excite specific core electrons (a, b, c, 
etc. from XAS plot).

• Some small differences were noted after 
hydride formation, but spectra strongly 
resemble NiO (J. Phy. Soc. Japan, 70, 1813)

• Need to repeat experiment with pure samples 
for more accurate resultsDOE User Facility, ALS at LBNL

XES XAS



In-Situ Deposited MgNi
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Mass and Heat Transfer

α β

Hydriding/dehydriding
Reaction

H2 mass 
diffusion

Nanoscale
heat transfer

Nanostructured
material

• The strongly exothermic hydriding
reaction increases the sample’s 
temperature which reduces the reaction 
rate or even stops the reaction altogether.

• Rapid hydriding reaction thus requires 
effective heat removal solution.

• Nanostructures usually have poor heat 
transfer characteristics.  Therefore, we 
need to balance mass diffusion kinetics 
with heat transfer.

• Diffusion limited hydride 
reaction.

• Optimal pore and particle 
sizes: balance pore diffusion 
and diffusion in the solid 
particle to control kinetics.
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Size Effects on Thermodynamic Properties

Assuming the following reaction

M + H2 → MH2 2

ln( )MH
o

M H

aG G RT
a P

Δ = Δ +

2
ln eq o o

H
H SP
RT R
Δ Δ

= −

2

( ) ( ) ln( )

3 ( , )

MH
o

M H

M M MH

aG r G r RT
a P

V r
r

γ→

Δ = Δ +

Δ
+

2/3

( , ) ( ( ) ( ))MH
M MH MH M adsoption

M

Vr r r E
V

γ γ γ→

⎛ ⎞
Δ = − +⎜ ⎟

⎝ ⎠

Bulk molar free energy of formation

Nanoparticle molar free energy of 
formation

• At nanoscale, surface and size 
affect reaction enthalpy.
– Increase the surface to 

volume ratio.
– Increase adsorption sites due 

to low coordination surface 
atoms.

– Lower binding energy in 
small metallic clusters.

Van’t Hoff relation



Modeling DFT Results

• If internal energy dependence on 
radius is all contained in the 
surface energy term

3 ( , )( ) M M MH
Bulk

V rE r E
r

γ→Δ
Δ ≈ Δ +

• Following Tolman’s work, surface 
tension is allowed to vary with 
radius
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Δ
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+
DFT values of internal energy 
calculated by Wagemans et al.  
J.Am. Chem. Soc. 2005, 127



• Nanoparticles with positive Δ will have

Enthalpy of Reaction

2

3ln eq o M M MH o
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3 M M MH
eff o

VH H
r

→Δ
Δ = Δ +

Lower equilibrium temperature
Less heat release during hydrogenation



Summary

1. Synthesis
– Synthesized Mg-Ni libraries
– Incorporated metal hydrides into aerogel

2. Characterization
– Developing fast characterization tools
– Aerogel + MgNi sorption and desorption data suggests 

simultaneous physi- and chemi-sorption
– Synchrotron XAS and XES analysis of samples 

3. Modeling
– Theoretical studies of size effects on transport and 

thermodynamics

Major Work Carried Out Since 09/05



Future Plan
1. Synthesis

– Improve laser based synthesis method
– Continue synthesis of Mg-X-Y library and other libraries
– Incorporate hydride nanoparticles in aerogel
– Developing nanoporous composites of nano-catalysts along 

with hydride nanoparticles
2. Characterization

– Continue developing characterization tools (IR, XAS, XES, 
pump and probe, cantilever analysis)

– Continue characterizing samples
3. Modeling

– Continue developing transport and thermodynamics models, 
and incorporate heat transfer considerations

– Carry out first principles calculations to study the effect of 
size on key parameters
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