

Electrode Stability

Xiaoping Wang, Deborah Myers, and Romesh Kumar Argonne National Laboratory

May 16-19, 2006

This presentation does not contain any proprietary or confidential information Project ID # FC 17

A U.S. Department of Energy laboratory managed by The University of Chicago

IE UNIVERSITY OF

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Work sponsored by U.S. Department of Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program

Overview

Timeline

- Formal project start data: October FY'06
- Project end data: Open
- Percentage complete: n/a

Budget

- Total funding: (\$500 K)
- Funding for FY06: \$350 K

Barriers

- Barriers addressed
 - A. Durability
 - **C. Electrode Performance**

Interactions

- Oak Ridge and Los Alamos National Laboratories
- Regularly providing updates and soliciting feedback from the FreedomCAR Fuel Cell Technical Team
- Collaborations with Argonne's BES-funded groups on characterization

Objective

- Elucidate rates and mechanisms of loss of electrochemically active surface area (EASA) of polymer electrolyte fuel cell platinum electrodes
 - Proposed mechanisms of EASA loss
 - Platinum dissolution and re-deposition to form larger particles
 - Platinum dissolution with loss of platinum into the membrane, GDL, product water, or other electrochemically inaccessible portion of the MEA
 - Particle migration and coalescence or transport of neutral Pt on support
 - Loss of electrochemically accessible Pt due to restructuring of electrode layer (e.g., loss of contact with proton-conducting phase) or impurity adsorption

Approach

- Determine mechanisms and rates of Pt dissolution
 - Dissolution measurements as a function of
 - Dissolution time
 - Potential
 - Type of electrolyte (adsorbing and non-adsorbing)
 - Form of Pt electrode and alloying (Pt wire, Pt/C, Pt₃Co/C)
 - Potential cycling
 - Temperature
 - Mechanism of the platinum dissolution reaction using RRDE

Determine particle size, oxidation state, and distribution of platinum

- Quantifying the extent of platinum loss in membrane-electrode assemblies using electrochemical and ex situ analyses
- In situ X-ray fluorescence and wide-angle diffraction studies of membrane-electrode assemblies

Progress vs. FY '06 Milestones

- Determine effect of potential and potential cycling on dissolution of Pt and Pt-Co supported on carbon (06/06)
 - Polycrystalline Pt for baseline performance
 - Completed study of dissolution behavior as a function of both potential and potential cycling
 - Pt/C
 - Completed determination of effect of potential and determined particle size change
 - Potential cycling study is near completion
 - Pt-Co/C
 - In progress
- Determine effect of temperature on dissolution of Pt and Pt-Co supported on carbon (09/06)
 - Design and construction of test apparatus for elevated temperatures is underway

Pt dissolution at 0.90 V reached equilibrium in >48h

- 10 wt% Pt/C supported on carbon cloth (E-Tek), imbibed with Nafion[®] in 0.57 <u>M</u> HClO₄
- Pt wire similar behavior

Dissolution behavior indicates that Pt/C is not passivated at >1.2 V

There exists a potential shift between the concentration and current-potential curves

Equilibrium concentration of dissolved Pt depends on potential

- Dissolved Pt equilibrium concentration
 - Less dependent on potential than predicted by Pourbaix diagram (in agreement with GM-MIT, Pt/C data)
 - Higher than predicted by Pourbaix diagram at < 0.95 V, less at > 0.95 V
- Both polycrystalline Pt and Pt/C showed a maximum Pt equilibrium concentration, at 1.1 V and 1.0 V, respectively
- At >1.2 V, dissolved Pt concentration decreases for polycrystalline Pt, but continues to increase for Pt/C

Polycrystalline Pt dissolution behavior explained by complex oxide layer formation

TEM analysis shows growth of Pt particles most significant during electrode prep or cycling pre-treatment

20 nm

The upper limit of potential cycling strongly affects the rate of Pt dissolution

Pt dissolution rate is accelerated by potential cycling to >1.0 V

Dissolution rate for potential cycling: Pt/C >> Pt wire

Potential cycling to higher potentials showed more extensive Pt particle growth

Under potentiostatic conditions

- Dissolved Pt equilibrium concentration is less dependent on potential than predicted by Pourbaix diagram (in agreement with GM-MIT data)
- Dissolved Pt equilibrium concentration is higher than predicted by Pourbaix diagram at < 0.95 V, less at > 0.95 V
- Both Pt wire and carbon-supported Pt nanoparticles (Pt/C) showed a maximum Pt equilibrium concentration, at 1.1 V and 1.0 V, respectively
- At >1.2 V, dissolved Pt concentration decreases for Pt wire, but continues to increase for Pt/C
- The dissolution rates at 0.9 V for Pt wire and Pt/C are comparable

Summary (cont.)

- Under potential cycling conditions
 - Pt/C: concentration of dissolved Pt increased with increasing upper potential limit
 - Pt/C and Pt wire: higher dissolution rate with increasing upper potential limit
- Potential Cycling vs. Potentiostatic
 - Dissolution rate increased with the upper limit potential for potential cycling, but showed a maximum for potentiostatic condition
 - At > 1.02 V, higher dissolution rate for potential cycling than for potentiostatic condition
 - At < 1.02 V, lower dissolution rate for potential cycling than for potentiostatic condition
 - Pt/C yielded much higher Pt dissolution rates than Pt wire

Response to FY '05 Reviewers' Comments

- Project should expand to include drier conditions and polymer electrolyte interface"
- Probably needs to find ways to do this with more realistic conditions next"
 - These will be addressed in the second phase of the project
 - *Membrane-electrode assemblies*
 - In sulfonic acid medium
- "Extrapolations of the present corrosion results for real systems are required"
 - Work scope will include a modeling effort to correlate Pt dissolution data with published single cell and stack data (e.g., LANL data)

Future work

- Pt/C high surface area electrode (E-Tek) in HClO₄
 - Finish determining potential cycling effect with higher upper-limit potentials (1.3 1.5 V)
 - TEM for Pt particle size and support change
 - Effect of atmosphere (air and hydrogen)
 - Effect of temperature (room temperature to 120°C)
- Pt₃Co/C high surface area electrode (Tanaka) in HClO₄
 - Potential (0.65-1.4 V)
 - Potential cycling (0.4 V to 1.4 V)
 - Atmosphere (air and hydrogen)
 - Temperature (room temperature to 120°C)
- Particle size, oxidation state, and distribution of platinum in MEA under varied experimental conditions (e.g, potentiostatic, potential cycling, different atmosphere, and temperature)

Jennifer Mawdsley and Nancy Kariuki for TEM work

Y. Tsai and Argonne's Analytical Chemistry Laboratory for ICP-MS analyses

- "Effect of Voltage on Dissolution of Pt, Relevance to Polymer Electrolyte Fuel Cells", Xiaoping Wang, Romesh Kumar, and Deborah J. Myers, *Electrochem. and Solid-State Letters*, 9 (5), A225-A227 (2006)
- "Fundamental Studies of Platinum Electrocatalyst Degradation", Xiaoping Wang, Deborah J. Myers, and Romesh Kumar, Fuel Cell Durability 2005, Washington, DC, December 8-9, 2005
- Polymer Electrolyte Fuel Cell Cathode Electrocatalysts", Xiaoping Wang, Romesh Kumar, and Deborah J. Myers, Poster and Abstract, 2005 Fuel Cell Seminar, Palm Springs, CA, November 14-18, 2005