Sub Freezing Fuel Cell Effects

Fernando Garzon Yu Seung Kim Rangachary (Mukund) Mukundan [Point of contact] Bryan Pivovar

Los Alamos National Laboratory

May 18th 2006 Project ID # FC30

This presentation does not contain any proprietary or confidential information

2006 HFCIT Program Review May 18 , 2005

Overview

LA-UR-06-2943

Timeline

Start : FY 05 Status : Ongoing

Budget

FY 05 : \$ 500K FY 06 : \$ 650K No cost share

Partners

Sandia National Laboratory

Lawrence Berkeley National Laboratory

GM and GE (Data sharing)

Barriers

- A. Durability
- D. Thermal, Air and Water Management
- J. Startup Time/Transient Operation

Table 3.4.4. Technical Targets: 80-kW, (net) Transportation Fuel Cell Stacks Operating on Direct Hydrogen ^a					
Characteristic	Units	2004 Status	2005	2010	2015
Transient response (time for 10% to 90% of rated power)	sec	1	2	1	1
Cold startup time to 90% of rated power © -20°C ambient temperature © +20°C ambient temperature	590 590	120 <60	60 30	30 15	30 15
Survivability	90	-40	-30	-40	-40

http://www.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf

2006 HFCIT Program Review May 18 , 2005

• Overall

• Assist the DOE-HFCIT program in understanding the role sub-freezing temperatures play on fuel cell performance and durability in order to meet DOE milestones for sub-freezing startup (-20°C, 30 sec, 5 MJ) and survivability (-40°C)

• FY 05

- Establish baseline research and future research needs for fuel cell operation and survivability at sub freezing temperatures
- Initiate research and development based on workshop findings to address start-up and survivability concerns at sub-freezing temperatures

• FY 06

- Identify degradation mechanisms (freezing and cold start-up)
- Quantify materials properties at sub-freezing temperatures

Approach

- Characterization of water in ionomer, catalyst, and gas diffusion layers
 - State of water in Nafion[®] and conductivity 10
 - State of water and conductivity in non-Nafion[®] 10% electrolytes, electrodes and GDLs
- Identification of degradation mechanisms
 - Freeze/thaw cycling (Ice formation)
 - Interfacial degradation in fully humidified fuel cells
 - Startup and shutdown
 - Measure transient response from -20°C to 80°C
 - Subject components to thermal cycling
 - Characterize mechanical/electrical properties

100% complete

10% complete

90% complete

30% complete

5% complete

State of water in Nafion® (FY 05)

LA-UR-06-2943

- Freezing (at > -40°C) can be avoided if the water is either dried sufficiently or replaced with antifreeze solutions.
- Freezing water leads to activation energy change and large drop in conductivity at lower temperatures.
- Of patented approaches, drying out leads to highest conductivities, perhaps has least adverse effects.
- Freezing water adds to latent heat necessary for rapid start-up.
- Controlled humidity and alternative ionomer experiments planned.

State of Water is Key!!!

2006 HFCIT Program Review May 18 , 2005

State of water in Nafion[®]

- Effect of varying RH
 - Nafion[®] in liquid water and 100%RH shows bulk like water, bound-freezing water and non-freezing water
 - Nafion[®] in equilibrium with 90%RH and 80%RH shows only bound-freezing water and non-freezing water
 - Nafion[®] in equilibrium with < 50%RH shows only non-freezing water

Condition	$T = 30^{\circ}C$
Water	$\lambda = 22$
Water Vapor	$\lambda = 13 \pm 4$
90% RH	$\lambda = 10\pm 2$
80%RH	$\lambda = 8 \pm 1$
50%RH	$\lambda = 5.5 \pm 1$
11%RH	$\lambda = 0.4 \pm 0.1$

LA-UR-06-2943

HFCIT Program Review May 18 , 2005

Conductivity of Nafion[®]

- Sample equilibrated @ 80-90%RH (7 < λ < 12) has optimal conductivity (corresponds to absence of bulk-like water)
- Dry/Frozen activation energy (0.5 0.6eV); wet activation energy (0.2 - 0.3eV)
- Avoiding bulk-like water may also help alleviate degradation mechanisms (ice formation at 0°C)

State of water in alternate membranes

	Total water(λ)	Tightly bound (non freezing) water (λ)	Loosely bound (sub-freezing) water (λ)	Free water (0°C freezing) water (λ)
Nafion	20	2	13	5
6F-30	9	7	2	0
6F-40	15	7	8	0
BPSH-30	12	4	8	0
BPSH-40	18	5	11	2

Non-Nafion[®] membranes exhibited lower number of freezable water!!

8

Degradation : Freeze/Thaw cycling (FY 05)

	Cho et al.	Wilson et al.	This work	
Membrane	Nafion [®] 115	Nafion [®] 112	Nafion [®] 112, Nafion [®] 1135	
Electrode	20 wt% Pt/C (0.4 mg/cm ²)	20 wt% Pt/C (0.16 mg/cm ²)	20 wt% Pt/C (0.2 mg/cm ²)	
GDL	wet proofed carbon paper	hydrophobic carbon cloth	hydrophobic carbon cloth	
MEA processing	Catalyst ink sprayed on GDL / 140°C hot pressing	Decal painting (TBA ⁺ form catalyst) /200°C hot pressing	Decal painting (TBA ⁺ form catalyst) / 200°C hot pressing	
F/T cycle	-10 to 80°C (4 cycles)	-10 to 80°C (3 cycles)	-5, -10, -20, - -80 to 80°C 30, -40 to 80C (9 cycles) (10 cycles) (9 cycles)	
Results	Performance drop, HFR increase, catalyst loss	No performance loss	No performance loss	Performance drop, HFR increase

9

Degradation : Freeze/Thaw cycling

Materials used

Membrane: Nafion[®] 1135 Catalyst: Pt/C E-Tek (20% pt loading), or Pt black (JM HiSpec 1000) GDL: SGL carbon paper (Low permeability,20% PTFE, standard MPL; SGL 30DC) or E-Tek carbon cloth (double side PTFE coating; v.2.02)

Catalyst	Application	Hot pressing	Initial performance	After F-T cycle (-40°C - +40°C, 15+ times)
Pt/C or Pt black	Painting on GDL	At 140°C At 220°C	Poor (less than 80 mA/cm ² at 0.7 V)	No Exp.
Pt/C or Pt black	Painting on membrane	No At 140°C		No performance
Pt/C or Pt Black	Decal transfer	At 140°C At 220°C	Good (greater than 500 mA/cm ² at 0.7V)	loss
Pt black	Half painting on GDL and membrane	At 140°C		

Milestone (Nov 05)

GDL: carbon cloth (E-tek)

Active area: 22 cm²

Degradation : Freeze/Thaw cycling

• 100 Freeze/Thaw cycles from -40°C

-40 - 80°C cycle 1.1 1.1 Cell votage (V) 1.0 open circuit Initial 1.0 50 cvcles 0.9 100 cycles Cell potential (V) 0.8 at 500 mA/cm 0.9 0.7 0.6 0.8 0.20 0.15 HFR ($\Omega \text{ cm}^2$) 0.7 ______ 0.10 00000 0.6 0.05 0.5 0.00 20 60 80 100 0.2 0 40 0.0 0.4 0.6 0.8 Cycling numbers Current density (A/cm²)

No Systematic Degradation Observable

Slight decrease in OCV associated with decrease in HFR Could be due to membrane thinning and/or improvement in membrane conductivity results in slightly improved performance

11

Degradation : Freeze/Thaw cycling

- No systematic degradation observed up to 45 cycles
- Mechanical Failure @ 45 cycles
- More tests initiated to investigate failure mechanisms

Characterization of GDL

GDL: carbon paper (SGL)

with microporous layer

Confocal Laser Imaging

Dr. Mike Hickner (Sandia National Laboratory)

Compressed GDL in anode No aging Image scale is 3.73 mm on a side

Compressed GDL in anode 45 F/T cycles from 80°C to -40°C Image scale is 3.73 mm on a side

After Fuel Cell operation

Channel Space in anode GDL 45 F/T cycles from 80°C to -40°C Image scale is 0.92 mm on a side

Evidence for breakage of fibers at the land/channel edge of flow field Could be due to heaving of the membrane while freezing More prominent at the anode than at the cathode

GDL Imaging (ESEM)

- *Ex situ* monitoring of ice formation
- Control of P_{H2O}(0-100% RH) and T (-40°C to +40°C) during imaging
- Freeze/thaw cycling at various RH while imaging

- Mount samples in cross-section (stage being machined)
- Examine interfaces during freeze/thaw cycling (GDL/MEA; catalyst/membrane)

Untreated GDL (SGL)

Ice (T =
$$-2^{\circ}$$
C; P_{H2O} = 3.8torr)

2006 HFCIT Program Review 14 May 18 , 2005

Performance during start up

- Have cell with ability to operate between -10°C and +80°C
- The end plates have flow channels through which fluid can flow
- These are connected to a chiller with propylene glycol/water mixtures
- Currently using 5cm² cells with a Neslab RTE 740 chiller
- Will have capability to cool 50cm² cells down to -20°C with ULT -80 chiller

End Plate With flow channels

Chiller connected to end plates

2006 HFCIT Program Review 15 May 18 , 2005

Performance during start up

0°C operation **Fully humidified** 0.6 e-Humidifie 0.55 0.8 Bypass 0.5 0.8 0.5 **F-Tek carbon** 0.6 0.45 cloth (double 0.4 0.6 Voltage (V) Voltage (V) T side PTFE 툵 0.4 0.4 0.3 coating: 0.4 0.35 v.2.02) 0.3 0.2 0.2 0.2 0.25 0.1 0.2 0.5 1.5 0.7 0.8 Current (A) Current (A)

- Operation at various temperature and humidity conditions to study start-up characteristics
- High Frequency resistance correlates with *ex situ* conductivity measurements
- Problems with operation below 0°C
 - Clogging of anode flow due to ice formation

Performance during start up

- Performance at low temperatures extremely dependant on GDL
 - At 0°C, performance improves with drying gases
 - Mass transport limitations at high humidity
- Start up will have to consider hydrophobicity of GDL for optimal performance

Milestone (Sept 06)

Component Degradation

- Currently setting up environmental chamber
 - Measurement of mechanical properties at low temperatures
 - Change in mechanical properties due to thermal cycling
 - Capable of independent operation

Freeze/thaw cycling of various components and cells Will be equipped with *in situ* electrical property measurements

SPECIFICATIONS		
Temperature Rating	-70 to +350 $^\circ$ C	
Internal Height	560 mm	
Internal Width	240 mm	
Internal Depth	230 mm	

Future Work

- Remainder of FY 06
 - Conductivity in non-Nafion[®] membranes
 - Transient response during cold start/stops
 - Component degradation due to freeze/thaw cycling
 - Mechanical/Electrical/Thermal properties (Sept 06)
- FY 07
 - Electrode and GDL conductivity at low temperatures
 - Ionic and electronic conductivity (transport numbers)
 - Mechanical and thermal properties at low temperatures
 - Degradation mechanisms during cold start/stop cycling

Project Summary

• Help DOE meet survivability (-40°C) and start up (from - 20°C in 30 sec with < 5MJ energy) targets

- Achievements Characterize state of water and conductivity in Nafion[®] membranes
 - Established durability of MEA to 100 freeze/thaw cycles to $-40^{\circ}C$
 - Identified GDL (carbon paper) failure as potential degradation mechanism
- Future Work
- Characterize component (mechanical/electrical/thermal) properties at low temperatures and degradation
 - Identify degradation mechanisms due to start/stop cycling from low temperatures

Response to Reviewer's comments

- "Need to do more thermal cycles (>100) to look for high cycle failure modes
 - Added 100 cycles to our testing
 - E-Tek cloth had no problems while SGL paper may have problems due to carbon fiber breakage (further testing initiated)
- "Should add structural issues : impact of frozen water on membrane"
 - Purchased and installed an environmental chamber on our Instron
 - We are on track to meet our Sept 06 milestone for characterization of component degradation after 100 freeze/thaw cycles
- "Good and clear presentation of future plans"
 - Achieved all milestones and expanded research in problem areas identified by initial research

Response to Reviewer's comments

- "Workshop was an excellent means of initiating collaborations"
 - Have continued interactions with conference calls and data sharing to keep the work relevant and complementary to industry
- "Good initial fundamental studies of water in membranes as a function of subfreezing temperature"
 - This work is 90% complete and has been published and presented
- "Take care that one doesn't a priori assume that a phase change of water in a membrane will necessarily cause problems"
 - The fundamental properties are being measure at the low temperatures (will be useful for any modeling effort)
 - Degradation mechanisms if any are being identified
 - Research is being focused only on those areas that present a problem

Publications and Presentations

- R. Mukundan, Y. S. Kim, F. H. Garzon and B. Pivovar, "Freeze/Thaw effects in PEM fuel cells" Accepted for publication in "ECS Transactions" Volume 1, "Durability and Reliability of Low-Temperature Fuel Cells Systems"
- R. Mukundan, Y. S. Kim, F. H. Garzon and B. Pivovar, "Freeze/Thaw effects in PEM fuel cells" Presented at the 208th meeting of the Electrochemical Society, Abstract # 1208, Los Angeles (2005)
- Y.S Kim, F. Garzon, R. Mukundan, B. S. Pivovar, "The role of membrane-electrode interface on fuel cell performance", 2005 Fuel Cell Seminar, Palm Springs, CA, Nov 14-18 (2005)
- R. Borup, "Durability and freeze/thaw effects in fuel cells" Presentation at Korean Institute of Science and Technology (KIST), (2005)

Critical Assumptions and Issues

- Operation of fuel cell below 0^oC
 - Problem with ice formation in the anode side
 - Will have to modify (enlarge) the anode flow channels similar to that on the cathode side where we do not have this problem
- Would like to add neutron imaging
 - NIST is planning to add a Z-direction imaging (tomography) capability this year
 - Once our hardware and their upgrade is completed we expect to use their facility

