Design and Development of High-Performance Polymer Fuel Cell Membranes

Joyce Hung, Joshua Stone, Joseph Suriano, Hongyi Zhou GE Global Research

DOE Hydrogen Program Review May 16, 2006

GE imagination at work

This presentation does not contain any proprietary or confidential information Project ID # FCP 11

Overview

Timeline

Project start date:4/2006Project end date:4/2011

Percent complete: New Project

Barriers

Barriers addressed

- Membrane cost
- Membrane durability

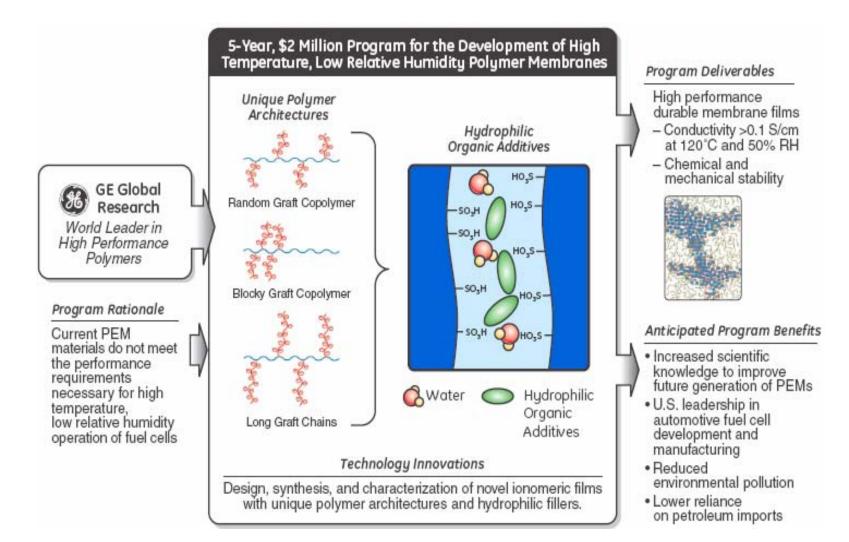
Total project funding

- DOE share: \$1.5M
- GE share: \$0.5M

Funding for FY06

- DOE: \$150K
- GE: \$50K

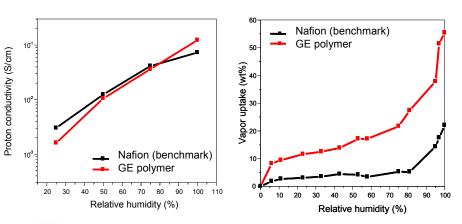
GE Program Objective


Design and develop novel polymer electrolyte membrane materials for fuel cell operation at high temperature (up to 120 °C) and low relative humidity (25-50 %RH)

Goals for FY06

- Design and synthesize new high performance polymer structures
- Design and synthesize hydrophilic organic additives
- Evaluate membrane performance with and without additives

Approach


GE Progress in New Membrane Development GE 1st Generation **GE 2nd Generation New Concepts** Random copolymers **Block copolymers** Unique polymer **Over 150 new materials and compositions** architectures 0.30 10⁻¹ GE- 1 space **GE-2** Conductivity @ 80C/100%RH 0.24 GE- 3 Proton conductivity (S/cm) **GE-4** Nafion 10-2 0.18 0.12 10⁻³ -Nafion (benchmark) **GE** polymer 1 0.06 **GE polymer 2** 10⁻⁴ GE polymer 3 0.00 20 30 90 100 40 50 60 70 80 110 40 80 120 160 200 Λ Relative humidity (%)

GE Membrane Characterization

All samples

- Proton conductivity (9-point)
 - 20°C, 100 %RH; 100°C, 75 %RH
 - Humidity scan from 25-100 %RH at 80°C
 - Temperature scan from 60-120°C at 50 %RH
- Vapor uptake (12-point)
 - Room temperature, 6-100 %RH
- Water uptake (4-point)
 - Weight and volume change in liquid water at room temperature, 60, 90, and 100°C

Select samples

- Microscopy (TEM, AFM)
 - Membrane morphology under dry and wet conditions
- Thermal-hydro-mechanical (TMA, DMA)
 - Dynamic, creep, and stress relaxation tests under dry and wet conditions

Fuel cell performance

- Gas crossover, polarization curves, durability at various temperature and RH conditions
- Accelerated durability testing
 - Mechanical and/or chemical stability under accelerated cycling conditions
- State of water (DSC, TGA)
 - Free, slightly bound, bound water, and their effect on polymers
- Small angle X-ray scattering (SAXS)
 - Membrane morphology under dry and wet conditions

GE Material Design

Thermally stable aromatic hydrocarbon polymers

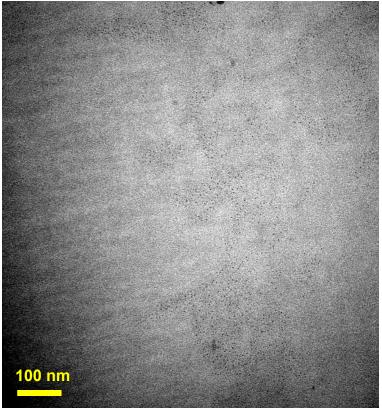
• Build on GE's strength and expertise in engineering polymers

No perfluorinated polymers

- Lower cost
- Benefit environment

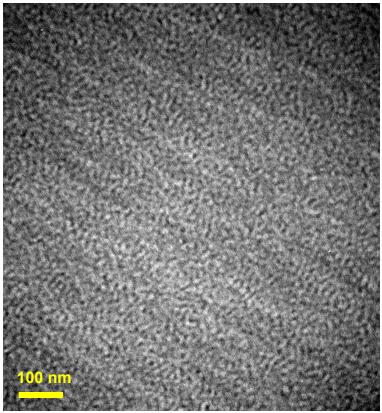
Balance proton conductivity, water uptake, and mechanical properties via material design

- Direct polymer synthesis from monomer building blocks
- Functionalization with acidic/basic groups, additives
- Control of membrane morphology through polymer architecture



Balance of proton conductivity and water uptake

Increasing Proton Conductivity


More open, connected membrane morphology \rightarrow higher proton conductivity

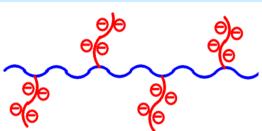
Random Copolymer

σ ~ 10⁻³ S/cm (50 %RH)

Block Copolymer σ ~ 10⁻² S/cm (50 %RH)

Improving Performance, Cost, and Durability

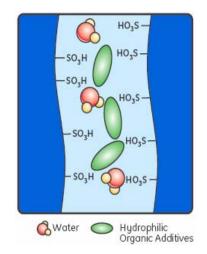
Optimize membrane morphology: new concepts in polymer chain design


- Promote phase separation and ionic aggregation
- Higher proton conductivity with good balance of water uptake properties

	•	Design: Graft copolymers
		 Higher concentration of acidic groups on pendant chains
Perform Durabi		 More efficient proton conductivity due to enhanced phase separation
		 Neutral polymer backbone provides better mechanical support when hydrated
	•	Materials: Aromatic hydrocarbon polymers
Lowe Cos	ər	 Unprecedented architectures in aromatic hydrocarbon polymers
	t	 Synthesis is non-trivial

Current status:

- Several synthetic approaches developed
- Explored two approaches
- Synthesis in progress



Improving High Temperature, Low RH Performance

Additives to maintain high T, low RH performance:

- Water retention at low RH
- Water supplement/replacement (with participation in proton conduction)
 - Design: Additives
 - Hydrophilic/hygroscopic
 - Thermally, hydrolytically stable
 - May participate in proton conduction
 - Materials: Organic compounds
 - Simple and versatile synthesis

Current status

Designed and synthesized several additive candidates

Future Work FY06/FY07

Materials synthesis

- Demonstrate feasibility of synthetic approaches to making new aromatic hydrocarbon polymer structures
- Design, synthesize, and characterize new monomers, polymers, and hydrophilic organic additives

Membrane evaluation

- Evaluate membrane properties (proton conductivity, water uptake, mechanical properties)
- Study membrane morphology to understand the effect of variations in polymer architecture on membrane performance

Project Summary

Relevance

Apply new concepts in polymer membrane design to resolve challenging technical issues related to membrane performance over a wide range of temperatures and humidities.

Approach

Design and synthesize new polymer architectures that promote membrane phase separation and ionic aggregation. Explore hydrophilic organic additives to improve performance at high temperature, low RH.

Progress

Developed synthetic approaches. Synthesis and evaluation in progress.

Future research

Continue design, synthesis, and evaluation of new materials. Develop further understanding of the effect of polymer architecture on membrane morphology and performance.

