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Overview

Timeline
Project start: October, 2006
Project end: Open

Barriers addressed
A : Durability
D : Thermal, Air and Water Management
J  : Start-up Time / Transient Operation

Budget
DOE share: 100%
FY06 funding: $225K

Technical Targets

Characteristics 2010 2015
Start-up time to 90% rated power

@ -20°C ambient T 30 s 30 s

@ +20°C ambient T 15 s 15 s

Survivability -40°C -40°C
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Objectives

To understand fundamental aspects of the start-up process at 
sub-freezing conditions and to identify the key mechanisms that
– Limit rapid start-up
– Lead to failure

To study the effect of different start-up and shutdown protocols on 
fuel cell durability and performance
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Approach

Develop transient models for the fuel cell to
– Quantify the interactions and contributions of multiple 

processes during start-up (mass transfer, kinetics, phase 
change, etc.) 

– Guide experimental characterization

Conduct start-up experiments on a fuel cell (single cell initially)
– At -40°C to +80°C
– Investigate the effect of prior shutdown protocols
– Validate model predictions



5

Published literature on experimental and theoretical work 
on fuel cell operation below freezing is limited

State of water
– Phase change in membrane affects transport properties [1,2]

Freeze/thaw cycling leads to
– Increased polarization resistance (2.8% loss per cycle [3]) 
– Increased contact resistance between electrodes and PEM

Maintenance and prevention methods
– Dry gas purging before shutdown
– Purge with antifreeze
– Maintain temperatures above 0 °C (e.g., by electric heating)

Start-up at sub-freezing conditions 
– Too much current draw may result in ice formation which can cover the 

electrochemically active surface area
– High air flow-rates are needed to remove water 

• Slows down the cell temperature rise
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Performance of PEFC decreases at low cell temperatures as 
ice formation reduces electrochemically active surface area
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The case at 0.015 A/cm2

represents a threshold value 
and has been used as a 
reference point in our 
modeling work

To maintain performance below freezing, water produced 
and removed must be in balance

Data from 
Hishinuma et al. [4]
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For a cell with 100 cm2 surface area at -10 °C, an air flow rate of 2.8 SLPM is needed to avoid saturation 
of water if the  current density is only 10mA/cm2. Calculations assume ideal conditions (no gradients).

• Atmospheric pressure

• Stoichiometry: Nair, actual / Nair, theoretical

Maximum amount of water vapor the air flow

can carry without saturation

High air flow rates would be needed to avoid water vapor 
saturation at low temperatures

Nw,anode denotes water flux 
from cathode to anode 
(Drag-Diffusion)

Nw,anode=15% means that 
15% of the generated 
water diffuses to the 
anode and only 85% is 
removed  by the cathode 
air flow

Nw,anode=0

Nw,anode=15%
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Using an idealized model, air in cathode channel is found 
to have a relative humidity less than 100% in the domain 
where voltage drop was observed
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Voltage drop observed 

Stable operation alfa=0

alfa=-0.15

• Temperature: –10 °C

• Flow-rate: 6.33 L/min

• Membrane active area: 100 cm2

•100% relative humidity equals
to 0.0028 bar of water vapor

• Air stoichiometry (6.33 L/min): 
380 at 10 mA/cm2

255 at 15 mA/cm2

Hishinuma et al. concluded that 
ice formation caused voltage drop 
at current densities > 10 mA/cm2

Nw,anode=15%

Nw,anode=0
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Diffusion resistance in gas diffusion layer increases water 
concentration near the catalyst layer

Cathode catalyst/membrane
interface

GDL/flow channel
interface

• Temperature: –10 oC

• Flow-rate: 6.33 L/min

• Membrane active area: 100 cm2

• Current density: 15 mA/cm2

• GDL thickness: 0.47 mm

With no water transport back to anode, water concentration barely exceeds saturation at 15 mA/cm2

Nw,anode=0

Nw,anode=15%
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Water concentration increases towards the exit of the fuel 
cell

x

y

alfa=0 alfa=-0.15

Cathode
Flow channel

GDL

Concentration of water predicted with a 2D model: T=–10 oC, Flow=6.33 L/min, Current density=15 mA/cm2

Water may reach saturation at the exit of the fuel cell if the water flux to the anode side is low

GDL

Cathode
Flow channel

Nw,anode=0 Nw,anode=15%

Color and contour lines denote relative humidity 
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A 3D model of the fuel cell is being developed to 
understand the dimensional and geometric effects

Model domain

Bipolar plate

The flow channels cover half the area of the 
porous backing (GDL)
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The 3D model predicts formation of liquid water which 
can freeze. The ice may begin to form under the current 
collector and spread out towards the flow channel

• Temperature: –10 oC

• Flow-rate: 6.33 L/min

• Membrane active area: 100 cm2

• Current density: 15 mA/cm2

• GDL thickness: 0.47 mm
Bipolar plate Flow channelFlow channel

GDL

Nw,anode=15%, exit of fuel cell

a) Product water formed under the current collector
has longer distance to be transported out to the
flow channel

a)
b)

b) Product water formed under the flow channel
has a short way to be transported out from 
the GDL 
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GDL=0.47 mm
GDL=0.3 mm

GDL=0.2 mm

Ideal case (no diffusional limitations)

alfa=0 • Temperature: –10 oC

• Flow-rate: 6.33 L/min

• Membrane active area: 100 cm2

• Current density: 15 mA/cm2

Thinner gas diffusion layers will lower the concentration 
gradients 

Nw,anode=0
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Thinner membrane layers lead to higher water flux from 
cathode to anode 
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• Temperature: –10 oC

• Cathode flow-rate: 6.33 L/min

• Anode flow-rate: 0.8 L/min

• Membrane active area: 100 cm2

• Current density: 15 mA/cm2

30 μm
50 μm

100 μm

150 μm thick membrane

)2/(
)(*

Fi
NAnodeCathodefluxWater w=−

D (30 oC) ~ 4x10-10 m2/s  [5]

D (-20oC) ~ 2x10-11 m2/s  [1]
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Interdigitated flow avoids water condensation and 
freezing. 
Interdigitated flow causes higher pressure drop.

Flow inlet Flow outlet

Catalyst layer

Arrow = Flow field
Color = water concentration (Relative humidity)

• Temperature: -10 °C

• Flow-rate: 6.33 L/min

• Membrane active area: 100 cm2

• Current density: 15 mA/cm2

• Nw,anode=0

Current collector

GDL

flow

membrane

Model domain
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Accomplishment: Model was used to show alternative 
explanations of freezing mechanism

A thick gas diffusion layer may induce a steep concentration gradient of 
product water. Water may condense and freeze at the electrochemically 
active surface area.

Thick membranes limit transport of water from cathode to anode. Water 
may remain in cathode and freeze.

Water may start to freeze under the current collector and spread out 
towards the flow channel. 
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Experimental: A fuel cell test apparatus has been setup 
for sub-freezing start-up experiments
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The environmental chamber allows operation 
from –40°C to 80°C

Fuel cell test apparatus. Walk-in hood, test stand, and chamber (from left to right)
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Initial experiments are being conducted to establish 
baseline operation of the fuel cell

• Active area: 50 cm2

• Membrane: Nafion® 1135
• GDL: Toray paper 060
• Straight channel flow pattern
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Electrochem Inc. baseline operation Initial tests carried out at room temperature

• Pressure: 3 atm
• Temperature: 75°C
• Reactants, H2/O2

• Pressure: 1 atm
• Temperature: 25°C
• Reactants, H2/Air 
• (H2=190 cm3/min, Air=500 cm3/min)
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Summary

Developed initial models (1D, 2D, 3D) to analyze water transport
properties in GDL and flow channels
– 3D models are necessary to understand geometrical effects
– Water may start to freeze under the current collector and 

spread out to the flow channel
– Thinner gas diffusion and membrane layer as well as 

optimized flow-field  may lead to less ice formation

Fuel cell test apparatus has been completed to evaluate cell 
performance from -40 °C
– Baseline operation data is being generated
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Future work and milestones

Future Work
Continue model development and validate models with experimental data

– Complete 3D model incorporating complete description of physico-
chemical phenomena to confirm direction of freeze propagation

– Use 3D model to refine transient 1D model including geometrical effects
– Study the effect of prior shutdown scenarios and power draw as function 

of time and temperature

Milestones
Complete startup tests from 0ºC on one or more cells 05/2006 On-schedule

Complete initial startup tests of cells/stacks from –20ºC 09/2006 On-schedule
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