

Novel, Combinatorial Method for Developing Cathode Catalysts for Fuel Cells

Keith D. Kepler Farasis Energy, Inc. 5-17-06

This presentation does not contain any proprietary or confidential information

Project ID: # FCP30

Overview

Timeline

- Start Date: October, 2004
- End Date: December, 2007
- 75% Completed

Budget

- Phase II SBIR
- Total Project Funding\$750,000
- 2005 Funding: \$246,000
- 2006 Budget: \$420,000

Barriers

- Low activity of non-Pt catalysts
 - 2004 Status: 8 A/cm³
 - 2010 Target: >130 A/cm³

Partners

• Illinois Institute of Technology

Need for New Fuel Cell Cathode Catalyst

Automotive Applications:

- Order of magnitude improvement over current Pt alloy based MEA's.
- Cost \$10/kW MEA Cost
- High Efficiency 0.2 g/peak kW total anode/cathode loading.
- Long Life 10-15 years life

Project Objectives

- Develop a controlled method for accurate high-throughput evaluation of new catalyst materials.
- Scale up combinatorial approach: Sample preparation, screening system and data processing.
- Evaluate several families of catalysts for oxygen reduction activity.
- Scale up new, low-cost high-activity catalysts for evaluation in fuel cells.
- Develop instrument for efficient evaluation of multiple fuel cell components (catalysts, membranes, MEA's, etc) for general use in process development and manufacturing quality control.

Why Combinatorial Approach for Catalyst Development?

Barriers to rational design.

- Complex surface chemistry.
- Lack of a complete understanding of the reaction processes involved.
- Many possible catalyst permutations (not confined by equilibrium phases).
- Screening in parallel allows for better evaluation of relative performance.
- Can potentially greatly reduce the cost of optimization and accelerate the discovery of new catalysts.

Phase II Project Catalyst Development Strategy

- Identify best chemistry first then optimize for utilization.
- Control all critical parameters to determine inherent catalyst activity.
- Use systematic DOE techniques to design catalyst array compositions and testing condition variables.

Technical Approach

Thermal Sensing

Thermal sensing allows for in-situ monitoring of individual catalysts samples in a closed fuel cell system.

Thermal Image

Heat Generation and Catalyst Efficiency

 $\label{eq:platinum} Platinum/0.2V \sim 10^{\text{-3}} \ W/cm^2 \\ Carbon/0.2V \sim 10^{\text{-6}} \ W/cm^2 \\$

Fuel Cell Catalyst Screening System

Advanced Energy Solutions

DOE Hydrogen Program Review May 16-19, 2006

ARASIS

Technical Approach Advantages

- In-situ screening under real operating conditions.
- Good control of critical parameters that affect performance.
- Great flexibility to screen any catalyst type for any fuel cell system.
- Simple, low-cost system scale-up.

Technical Accomplishments/ Progress/Results

Finalized Gen 1 screening system design and verified performance.

- Uniform stack pressure.
- Uniform fuel distribution.
- Uniform heat signal.
- Prototype Gen 2 screening system developed.
- Developed high-throughput sample preparation system.
- Exploration of catalyst families.
- Detailed characterization of binary Pd-Co catalyst system.

Thermal Modeling to Aid System Design

Developed design in miniature before scale up.

- 35 cm² array cell.
- Accelerates development cycle.
- Lowers cost of development.
 - Smaller MEA's
 - Fewer Samples.
 - Less Labor.

Qualify on 4-sample array apparatus before scale up.

Qualification Procedure.

- Demonstrate correlation between current and temperature.
- Verify uniform fuel flow.
- Verify uniform stack pressure.
- Verify evaluation of constant catalyst surface area across array.
- Scale-up to 25-sample array apparatus.
- Catalyst Screening.

Gen 1 System: Thermal Signal Correlations

4-Sample Array

2x Pt (top) vs. 2x Carbon (bottom)

25-Sample Array

- 55 °C Operation
- H₂/O₂
- Binary array
- $\Delta T \sim 2^{\circ}C$
- Hot spots highest activity

After switching right-side samples

- Best identified catalyst families are further characterized by conventional methods.
- Electrodeposited catalyst samples CV's, Rotating Disk.
 - Carbon supported catalyst MEA's, H₂ fuel cell.

Preparation and Characterization of Carbon Supported CoPd_x Electrocatalysts

Preparation

- Deposit Salts using Sodium Bicarbonate as reducing agent. Co[NO₃]₂*6H₂O, Pd[NO₃]₂
- Catalyst filtered, rinsed, vacuum dried and activated in a 2%H₂, 98%Ar atmosphere for 24 hours.
- Loading 10 wt % CoPd_x on Vulcan XC72R

CharacterizationSEM/EDX, BET

DOE Hydrogen Program Review May 16-19, 2006

Farasis Energy, Inc Advanced Energy Solutions

Co-Pd Catalyst Family with High Activity

Polarization Curves for Co-Pd compositions

EARASIS

CoPd_x Kinetic Parameters

Arhenius Plots for the ORR in a 5 cm² PEMFC on CoPd_x Electrocatalysts

Calculated Kinetic Parameters for ORR on CoPd_x Electrrocatalysts in a H₂/O₂ PEMFC

Composition	Onset Potential (V)	Activation Energy (kJ/mol)	Tafel Slope, b 60°C (mV/dec)	Exp[a/b]
CoPd	0.87	80.4	96.5	4.08E+02
CoPd₂	0.88	104.0	87.1	1.23E+03
CoPd₃	0.92	52.4	69.6	2.69E+04
CoPd₄	0.89	100.3	90.3	7.69E+02
CoPds	0.90	99.8	100.1	2.43E+02
CoPd9	0.89	320.0	34.8	1.72E+08

Performance Stability of Pd₃Co in Hydrogen Fuel Cell

Open Circuit Voltage Pt and CoPd₃cathode/ Pt-anode MEAs in a 5 cm² PEMFC at 60 °C. Performance Stability of Pt and CoPd₃ cathode MEAs at 0.8 V, 60 °C.

• Some performance degradation of PdCo₃ catalyst observed.

- Scale up Gen 1 screening system to 50-100 samples/cell.
- Scale up Gen 2 screening system.
- Continue large scale screening of non-noble metal catalysts.
- Verify results in standard fuel cells.
- Continue Pd-Co development.

Summary

- We have developed an easily scalable method of combinatorially screening materials for electrochemical systems based on their efficiency related thermal signature.
- We are using this system to evaluate catalysts for oxygen reduction activity.
- Materials with the greatest potential are further characterized and optimized by conventional methods.
- Our combinatorial technique and development strategy greatly increase our probability of success and decrease our discovery time.

Publications

- Mustain, W.E.; Kepler, K. D.; Prakash, J.; "Investigations of Carbon-Supported CoPd₃ Catalysts as Oxygen Cathodes in PEM Fuel Cells", Electrochemistry Communications, 8 (2006) 406-410.
- Mustain, W.E.; Kepler, K. D.; Prakash, J.; "CoPd_x Alloys as Oxygen Reduction Electrocatalysts for Polymer Electrolyte Membrane and Direct Methanol Fuel Cells", submitted for publication.

