	Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications
	Project ID # FCP36
	Poster Session at:DOE Hydrogen Program Annual Merit ReviewCrystal Gateway Marriott, Arlington, VA May 16–19, 2006
Chips	Presented by:TIAX LLCEric J. Carlson15 Acorn ParkCambridge, MA02140-2390
	May 17, 2006

This presentation does not contain any proprietary or confidential information

Timeline	Ba	rriers		
Start date: Feb 2006	 Barriers addressed 			
Base period: Feb 2008	» A. Cost	Cost Targets* (\$/kW)		
Ontion period: Feb 2011		2005	2010	2015
	Fuel Cell System	125	45	30
	Fuel Cell Stack	65	30	20
	* Manufactured at volume	e of 500,000	0 per year.	
Budget	Par	tnors		
 Total project funding Base Period = \$343K With Options = \$1,484K No cost share FY06 = \$100K obligated 	 Collaborate with ANL on syster configuration and modeling Feedback from: Fuel Cell Tech Team, Developers 		ystem g Fech	

	Objectives
Overall	 The project objective is to provide technical support services to the DOE for cost estimation/analysis for Direct Hydrogen PEMFC systems for automotive applications
2005– 2006	 The focus over the next 12 months will be on developing system costs as a function of production volume, i.e., to understand the economies of scale for fuel cell materials, stacks, and balance-of-plant components Cost of systems meeting 2010 and 2015 technical targets
2006– 2011	 Annual up-dates of high volume cost projection Specific Analysis topics including cost implications of Ambient versus pressurized operation High temperature, low humidity operation Lower temperature, low RH hydrocarbon membrane Alternative PEMFC approaches including cell/stack constructions and air compressors Fuel cell vehicle hybridization Other topics as the need arises

Our manufacturing cost estimation involves technology assessment, cost modeling, and industry inputs to calibrate our assumptions and findings.

(TIAX

tive production processes appear in grav to th

5,000 psi

10,000 psi

3

\$2

en

TIAX Base Case

Stack Assembl

We will primarily use a bottom-up approach to determine the impact of production volume on manufacturing cost.

Two General Approaches:

- Bottom-Up Manufacturing Process Methodology
 - » Based on impact of volume on material costs
 - » Based on impact of volume on process type, equipment, and level of automation
 - » Use for major stack cost contributors and critical processes
 - » Use Boothroyd Dewhurst Design for Manufacturing (DFM[®]) software for BOP components cost estimation, such as the compressor expander, RH control devices, heater exchangers, etc.

Experience Based Methodology

- » Based on "learning curves" and/or comparison with similar products
- » Use for lesser cost contributors, e.g., sensors, controllers,

The DOE has requested costs for production volumes of 100 units/ year for 4 years, 30K/yr, 80K/yr, 130K/yr, and then 500K/yr.

We will consider materials and BOP components on a case by case basis for their manufacturing maturity and our approach to scaling their cost.

Materials (membranes, GDL, bipolar plates, Pt,…)		BOP Components (Mechanical, Heat Exchangers, RH,)
Available Now	New Materials	
Volume or Commodity Pricing Available	Scale Up Production	Approach to be Selected Component by Component
Vendor Discussions and/or Experience	Bottom-Up Costing	

We will use cost versus volume curves from three production volume scenarios to define an integrated scenario.

The reduction in process costs was the primary driver for the economies of scale. Higher equipment utilization led to lower capital costs.

The 2005 update* of the cost projection for PEMFC technology will be used as a baseline for the economies of scale analysis.

* E Carlson, et.al., "Cost Analysis of PEM Fuel Cell Systems for Transportation", National Renewal Energy Laboratory (DOE), September 30, 2005, Subcontract Report NREL/SR-560-39104 (December 2005)

Our economies of scale analysis will only consider factory cost, consequently, the results will not be comparable with fuel cell prices.

Low Volume Price	Excluded from DOE Cost Estimate	Profit	
Will include a significant component	Corporate Expenses (example) Research and Development Sales and Marketing 	Sales Expense	
and other corporate expenses	 General & Administration Warranty Taxes 	General Expense	
+	DOE Cost Estimate (Factory Cost)	Factory	
Low volume	Fixed Costs	Expense	OEM
factory costs	 Equipment and Plant Depreciation Tooling Amortization 	Direct	Price
	Equipment Maintenance Utilities	labor	
	 Indirect Labor Cost of capital Variable Costs Manufactured Materials Purchased Materials Fabrication Labor Assembly Labor Indirect Materials 	Direct Materials	

Stack components, because of their large number and compatibility with continuous processes, will realize economies of scale sooner than BOP components.

High Part Count Components	Low Part Count Components
 Stack unit cells (e.g., 450 per stack) Individual layers (membrane, GDL, electrodes) amenable to continuous processes Bipolar plates automated molding methods 	 Stack hardware End-plates (2/stack – 4/system), bolts (8/system), manifold (1/system), enclosure (1/system) Balance-of-Plant (Individual Components) Heat exchangers (<5 pieces per system) Air management (1 per system) RH management (several technologies but only 1 component) H₂ recirculation loop (e.g., blower, ejectors) Controls, sensors,

Approximately 46% of the 2005 high volume cost comes from Pt commodity cost and will not be subject to economies of scale.

2005 Key Assumptions		ions	Fuel Cell System Cost—80 kW Direct H ₂
Power density	mW/cm ²	600	(108 \$/kW ¹ , \$8,640)
Cell voltage	V	0.65	
Net power	kW _e	80	BOP 37%
Gross power	kW _e	90	38%
Production volume	units/yr	500,000	
Pt cost	\$/g (\$/troz)	29 (900)	
Pt loading	mg/cm ²	0.75	Pt Catalyst
Stack Quality Control (QC) and conditioning not included) and	17% Conversion 8%

However, with time performance improvements will lower the grams Pt/kW_{net} over time.

With the exception of heat exchangers, the BOP components have not been made at high volumes.

Technology advances such as high temperature membranes could simplify the RH components and reduce the size of the heat exchangers.

Stack conditioning and final quality checks could be significant cost contributors at low volumes.

- Example: Assumptions
 - » Capital cost for a test station is \$200,000
 - » Labor is 0.2 per station
 - » Yield is 100%
 - » Up-time is 80%
 - Does not include consumables such as H₂ or credit for the power
 - » Production volume: 500,000 units/year
- For reference, stack cost is 361 \$/m²

	2 Hours Stack Conditioning	24 Hours Stack Conditioning
# of test stations	521	6,250
# of stacks per day	4168	4168
Total equipment cost	\$104 Million	\$1,250 Million
Cost (\$/m ²)	9.01	108.10

Testing of the complete system with BOP would represent an additional cost.

