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Overview

• Start date 4/15/2006
• End date 4/15/2011
• Percent complete 0%
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• High proton conductivity 
membranes at high T and low 
RH.

• Membranes with good 
mechanical properties.

• Membranes with low gas 
permeability.

• Total project funding
– DOE $1,455,257
– Contractor (CWRU) $481,465

• Funding received in FY05, 
$150,000

• Funding for FY06, $296,620

Timeline

Budget

Barriers

Eric Fossum, Dept. of 
Chemistry, Wright State 
University, Dayton, OH

Interactions



Objectives

• Fabricate and characterize a new class of NanoCapillary
Network (NCN) proton conducting membranes for 
hydrogen/air fuel cells that operate under high temperature, 
low humidity conditions. 
– Electrospun nm-size fibers of high ion-exchange capacity polymer 

that are vapor welded and imbedded in an uncharged polymer 
matrix

– Addition of molecular silica to further enhance water retention
– Employ the concept of capillary condensation for membrane water 

retention.

• Hydrogen/air PEM fuel cells are an important component of 
the DOE’s Hydrogen Program.
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Plan and Approach
> Task 1  Sulfonated Polymer Synthesis
• Different polymer IECs
• With and without molecular-level silica
• Polymer crosslinking studies
• Polymer characterizations

> Task 2  Electrospinning Process 
Development

• Creation of a fiber mat
• Fiber Welding Studies

> Task 3 Matrix Polymer Identification and 
Membrane Fabrication

• Identify an inert (uncharged) polymer
• Develop method for adding polymer to the 

fiber mat

>Task 4 Membrane Characterization
• Bubble point test 
• Equilibrium water swelling as a function of 

T and RH  
• Preliminary through-plane and in-plane 

conductivity at different T and RH 
• Thermomechanical analysis  
• Mechanical properties  
• Oxygen permeability 
• SEM and TEM micrographs of membrane 

cross sections
• Thermal analysis (DSC and TGA) of the 

sulfonated and non-sulfonated polymers 

> Tasks 5 Membrane Composition/Structure 
Optimization
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Plan and Approach – Proposed 
Membrane Morphology

Structure for NanoCapillary Network (NCN) membranes: 

The electrospun sulfonated polymer fibers with/without 
molecular silica are interconnected by vapor welding and the 

inter-fiber spaces are filled by a nonconducting, gas 
impermeable polymer

Interconnected 
Protonic Pathway

Impermeable
Matrix

50 nm
250 nm

Interconnected 
Protonic Pathway

Impermeable
Matrix

50 nm
250 nm
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Plan and Approach – Sulfonated 
Polymers
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Plan and Approach – Sulfonated 
Polymers
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*Mecham, J.B.,  Ph. D. Dissertation, Virginia Polytechnic Institute and 
State University, (2001).



Plan and Approach – Inert Matrix 
Polymer

Epoxy – For sPEEK and aPAES, a room-temperature curing two-part commercial 
epoxy (e.g., Epoplast™ or Epon 862/Epi-cure W) will be used.

Acrylate - To serve as the matrix 
for sACRYL nanofibers, a methyl 
acrylate copolymer matrix will be 
formed in-situ by bulk photo-
copolymerization of a mixture of 
methyl methacrylate, methyl 
acrylate)/butyl methacrylate, butyl 
acrylate)/ ethyleneglycol
dimethacrylate, or 
trimethylolpropane trimethacrylate
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Accomplishments/Progress/ Results 
Slides
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Set-up at CWRU for electrospinning of sulfonated polymer 
fiber capillary network. A syringe pump delivers polymer 
solution to the charged needle, expelling a fibrous stream to 
the grounded collector.



Accomplishments Slides (con’t)
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Preliminary data of sPEEK electrospun onto ITO-coated glass (a) 
showing a spatial gradient of fiber density from position “1” to “4”. 
Polarized optical microscope (POM) images (b, c) reveal significant 
birefringence and thus molecular orientation. Only fibers oriented 
near +/- 45o are visible in this configuration. The POM scale bars are 
50 mm.



Future Work

• Fiscal Year 2005-06 - Prepare and characterize 
sulfonated polymers (without molecular silica), 
including sPEEK, sPAES, and sACRYL. Begin 
sulfonated polymer electrospinning experiments.

• Fiscal Year 2006-07 – Synthesize and electrospin
sulfonated polymers with molecular silica. Add an 
inert polymer to electrospun mats. Begin to 
characterize the resulting membranes.
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Summary
• Approach:  Fabricate and characterize NanoCapillary Network (NCN) proton 

conducting membranes for high T, low RH hydrogen/air fuel cells. The proposed 
membrane micromorphology is the 1st of its kind for fuel cell applications.

• Relevance:  The proposed membranes will meet DOE performance targets – a 
proton conductivity ≥ 0.07 S/cm at 80% RH and room temperature (achieved by 
the 3rd quarter of year 2) and > 0.1 S/cm at 50% RH and 120oC (achieved by the 
3rd quarter of year 3)

• Technical Accomplishments and Progress:  Electrospun fiber mats have been 
fabricated from sulfonated poly(ether ether ketone)

• Proposed Future Work: Create fiber mats from various sulfonated polymers 
(with and without molecular-level silica), add inert polymer to the inter-fiber voids 
and begin characterization of the resulting membranes.
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Critical Assumptions and Issues
• That we can create a 3D interconnected network mat of very small diameter 

(10-50 nm) proton-conducting polymer nanocapillaries, where the 
nanocapillary network occupies about 40-70% of the dry membrane volume. 

• That we can fill the inter-fiber void volume with an inert (uncharged) polymer 
with no pin hole defects in the resulting membrane.

• That capillary condensation of water within the nanocapillaries (due to their 
nm-scale diameter in combination with the high loading of sulfonic groups 
and restricted swelling) will promote membrane water retention, thereby 
increasing proton conductivity under low relative humidity conditions.

• That by the incorporation of molecular-level silica into the sulfonated 
polymer nanocapillaries, we will observe further improvements in water 
retention and low RH proton conductivity.
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