2006 DOE Hydrogen Program Review

Component Benchmarking Subtask Reported: Single Cell Testing Second Round Update and Technically-assisted Industrial and University Partners

Principal Investigators* Tommy Rockward Los Alamos National Laboratory May 2006

* Entire Los Alamos Fuel Cell Research Team

LA-UR-06-2957

Project # FCP 9

This presentation does not contain any proprietary or confidential information

Overview

- Timeline
 - Start: 10/03
 - End: ongoing
 - % complete: N/A
- Budget
 - FY05 funding: \$250K .
 - FY06 funding: \$350K
 - DOE share: 100%
 - Contractor share: N/A

- Barriers
 - A. Durability
 - B. Cost
 - C. Electrode performance

- Partners/Collaborators
 - Next slide

Technically-Assisted Collaborators/Partners

- USFCC
- Working Group 12 Doc: ISO 14687 Hydrogen Quality Standard
- Donaldson
- OSRAM/Sylvania
- Brookhaven National Laboratory
- University of New Mexico
- NASA
- University of Illinois
- Oak Ridge National Laboratory

- Augustine Scientific
- Porous Materials Inc.
- Surface Measurement Systems
- Gore
- FreedomCAR (GM, Ford, and Daimler-Chrysler)
- University of Texas
- Air Force Research Lab
- NRC Canada (Ottawa)

Approach

- Component Benchmarking (standardized testing resulting in confidence in MEA and component performance is essential to overcoming Fuel Cell Barriers)
 - USFCC single cell test protocol
 - Durability protocol development
- Technical Assistance to Developers (sharing technical assistance to developers)
 - Most DOE-directed effort under the parent task generates proprietary data

Single Cell Task Force

Scope

- Standardized fuel cell testing protocol to provide a means for comparisons

Intent

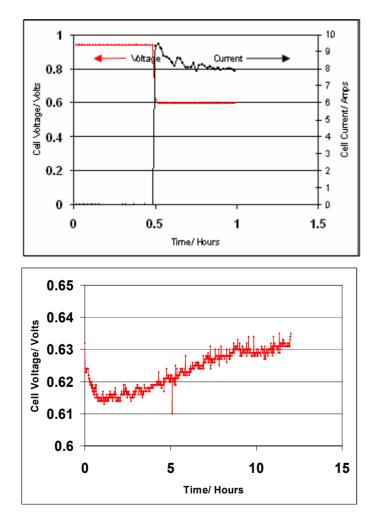
To enable publishing of test results of a material or component in a consistent, verifiable manner

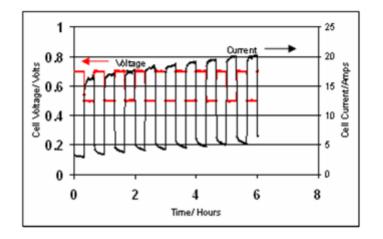
Method

 Use of baseline hardware and materials with standard protocol for leak check, break-in, conditioning and polarization curves

Amendments to Protocol

- Initial break-in polarization curve performed at higher temperature (80°C)
- Agreed upon data format
- Increased number of testing cells to five


Single Cell Test Protocol


- Cell Assembly
- Pressure Testing
 - Verify proper hardware sealing
 - Determine a gross crossover leak rate
 - Electrochemically determine hydrogen crossover
- Initial Break-In
- Conditioning
- Polarization Curve

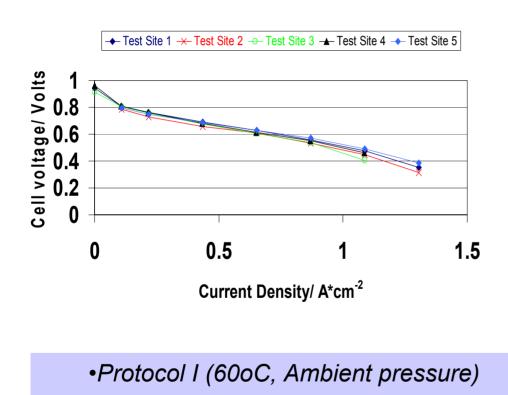
Break-In Stages

First Stage

٠

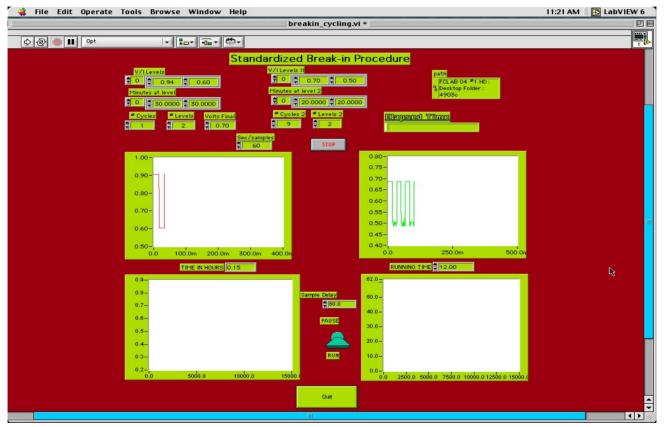
.

- Voltage Cycling at 30 minutes per setting (0.94V to 0.60V at 10 Stoich, 10 Amps)
- Second Stage
 - Voltage Cycling for 6 hours at 20 minutes per setting (0.70V to 0.50V)
- Third Stage
 - Constant Current (10A) for 12 Hours


Conditioning Stage

- Necessary to re-humidify the fuel cell prior to running a test
- 20A Load for 4 hours
- Considered complete when voltage is equilibrated(2-3 mV)

Subsequent Testers: Generate Polarization Curves



•Protocol II (80oC, 25 PSIG)

Steps	Current (Amps)	H ₂ Flow (SLPM)	Air Flow (SLPM)
0(< 1 m)	0	0.042	0.166
1	5	0.042	0.166
2	10	0.084	0.332
3	20	0.167	0.663
4	30	0.251	0.995
5	40	0.334	1.327
6	50	0.418	1.658
7	60	0.501	1.990

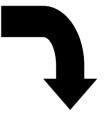
The Institute for Hydrogen and Fuel Cell Research

LANL's Role: Second Round-Robin Testing

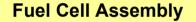
- Qualify cells via leak tests
- · Perform initial fuel cell break in
- Conduct post-cell tests

Future Plans

- To utilize lessons learned to improve the existing protocol
- To expand the testing protocol to include longevity and durability testing
- To define a calibration procedure for test stations running these types of measurements



LANL's Fuel Cell MEA Fabrication



Ink Catalyst Preparation (PEM, DMFC, Sprayable Inks)

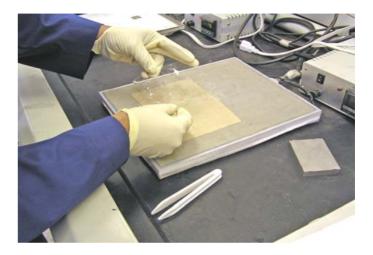
> Initial Membrane Treatment

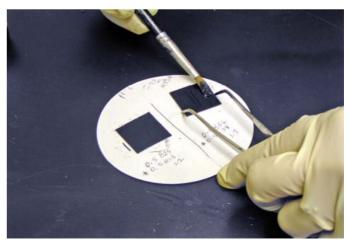
Applying Electrodes (substrate, direct, GDL)

Post Membrane Treatment

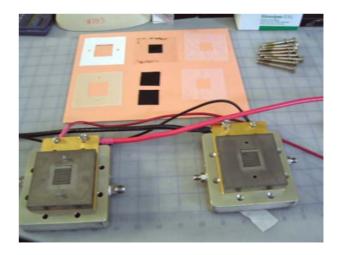
The World's Greatest Science Protecting America

Los Alamos


Steps in LANL's MEA Preparation



Steps in LANL's MEA Preparation



LANL's Procedure and Protocol*

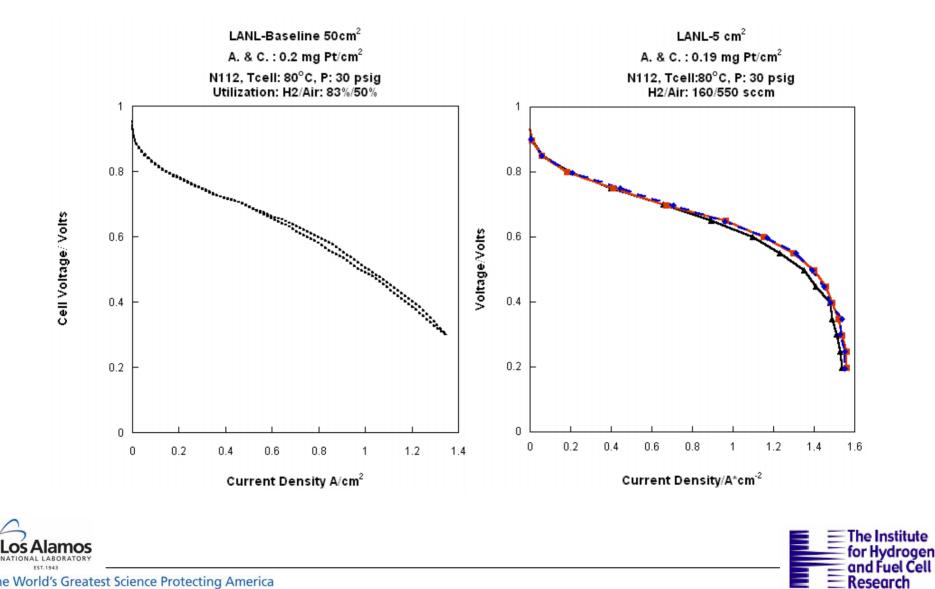
- Components
 - Various Sizes of Hardware
 - Membrane type: N112, N1135, N115 or N117
 - Pt-Loading: 0.2 mg Pt/cm² (20% Pt/C each electrode)
 - Verified by substrate calculation and XRF measuring
 - Profilometry for coating uniformity
 - Backings: 1-sided/2-sided ELAT
 - Orientation is fuel cell size dependent (water mgmt.)
 - Sealing Materials
 - Silicon gaskets & teflon masks

- Cell Assembly
 - Five layer configuration and gaskets
 - Torque
 - Star-like pattern 25 in-lbs increments to ~90 in-lbs
 - H₂ Leak Test
 - Probe exterior hardware with handheld H₂ detector
 - Dead-end hardware outlet

*Variation can be incorporated to suit hardware and/or testing scope

LANL's Procedure and Protocol*

- Initial Operating/Break-in Conditions:
 - T_{cell/anode/cathode}: 80/108/80°C
 - P_{anode/cathode}: 30/30 psig
 - H₂/Air Flowrate: size dependent
 - Break-in Procedure:
 - Constant Current or Voltage
 - Current or Voltage Pulsing
 - Measure and Record as a function of time
 - Measure and Record High Frequency Resistance vs. time


- Core Testing: (Before, During & After)
 - Gas diffusion contact angle measurements (Sessile drop Method)
 - Cyclic Voltammetry
 - Anode/cathode
 - H₂ cross-over
 - H₂ Pump Experiments
 - VIR (H₂ and air Flowtracking)
 - MKS Flow controller calibration (corrected for temperature & pressure)
 - Constant Voltage or Current tracking

*Variation can be incorporated to suit hardware and/or testing scope

LANL's Baseline VIs

LANL Testing Facility/Equipment

Testing Facility:

- Over sq. ft of Lab space
- A Class 100/10000 cleanroom
- 6 Fume hoods
- 2 Hydrogen electrolyzers distributed to every lab
- 2 Pd-membrane Hydrogen Purifiers
- 2 Central oil-free air supply systems distributed to every lab
- 2 Centralized de-ionized water systems distributed to every lab
- 2 CNC numerical controls
- 2 Modular fuel processors
- 2 Reformers (Diesel and Gasoline)
- 4 Hot presses for preparing MEAs

Fuel Cell Testing Equipment:

- 33 Single-cell FC test stands
 - PEFC and DMFC compatible
 - Stoichiometric Flow tracking
 - Drive-Cycle and/or potential cycling
 - Capable of custom gas mixing
 - Multiple hardware sizes
 - Computer automated
- 1 LANL designed Segmented cell and in-house developed software
- 2 Fuel cell stack test stands (upgradeable 20kW load bank)
- 2 Fuel Processing Test stands (capable of chemical flows equivalent to 50kW)
- Freeze-Thaw Environmental Chamber

LANL Materials Testing Facility/Equipment

In-house characterization capabilities for analyzing material:

- X-ray: (Fluorescence, Diffraction, and energy dispersive spectroscopy)
- Thermogravimetric, Differential Thermal, and Evolved Gas Analysis
- Differential Scanning Calorimetry
- Atomic Force, Scanning Electron, and Optical Microscopy
- High pressure/high temperature
 adsorption/desorption measurements
- Dielectric microscopy
- Water Analysis
 - F⁻, ion selective probes, and ICP-MS

Gas Analysis Capabilities:

- 2 GC/Mass Spec
- 2 Mass Spectrometer
- 11 Gas Chromatographs
 - Including flame ionization, thermal conductivity detectors and Helium photo-ionization
- BET/chemisorption
- Multiple Non-dispersive Infrared CO and CO₂ analyzers
- 1 Density meter
- 1 Parr pressure reactor
- 1 Mercury porosimeter
- FTIR
- 5 paramagnetic gas analyzers
- FID

Technical Assistance to Developers

• Due to the proprietary nature of the data collected, limited data is available for public disclosure. LANL contributions may likely be found in DOE presentations of collaborators (see slide 3 **Technically-Assisted Collaborators/Partners**). For further information contact:

Ken Stroh, Ph.D., Group Leader Deputy Director, Institute for Hydrogen and Fuel Cell Research Program Manager for Fuel Cells & Transportation PO Box 1663, Mail Stop D429 Los Alamos National Laboratory Los Alamos, NM 87545 (505) 667-6832 MST-11 Group Office (505) 667-7933 stroh@lanl.gov

Future Work

- Remainder of FY 06
 - Second round of round-robin testing for USFCC single cell test protocol
 - Contribute to durability protocols
 - Continue assistance to developers at DOE discretion
- FY 07
 - Complete testing for USFCC single cell test protocol
 - Contribute to durability protocols
 - Continue assistance to developers at DOE discretion

Project Summary

- Provide assistance to fuel cell community in establishing standardized testing protocols (i.e., single cell and durability)
- Provide technical assistance to developers to accelerate fuel cell commercialization
- Completed first round of USFCC single cell protocol testing and initiated second round
- Achievements

Goals

- Participated in durability and accelerated test protocol establishment
 - Provide assistance to developers

Critical Assumptions and Issues

- Standardized Testing
 - Need input from industry and other researchers
 - Specialized/calibrated equipment may be required for testing.
 - Protocols need to be accepted and widely implemented to assure value.
 - We are participating in working groups and protocol development in order to promote accepted standards and procedures.

Response to Reviewers Comments

- "Need to bring in more analytical resources to support durability testing."
 - We have significant analytical tools (see slides 18 and 19 for example) and have used these extensively for durability testing (see DOE presentation FC 28, PEM Fuel Cell Durability, LANL).
- "Through USFCC, become the advocate of standard method for durability and accelerated test protocols."
 - We have been a significant contributor to a USFCC durability test protocol, and our involvement is continuing.

Publications and Presentations

- David Lane (W.L. Gore and Associates), Eric Teather (DuPont Fuel Cells), Tommy Rockward (Los Alamos National Laboratory - LANL), Francisco Uribe (LANL), Dawn McNeil, (Teledyne Energy Systems), Ross Bailey (Greenlight Power Technologies), Michael Pien (ElectroChem, Inc.), "Establishing a Standardized Single Cell Testing Procedure through Industry Participation, Consensus and Experimentation," Proc. 2004 Fuel Cell Seminar
- Davey et al., Overview of Fuel Cell Membrane Electrode Assemblies (MEAs) at Los Alamos National Laboratory (LANL),1st Symposium on MEA Manufacturing, Dayton 2005
- Proprietary letter reports to DOE and developer on DOE-directed Technical Assistance to Developers under parent task

