

2006 DOE Hydrogen Program

Cost-Effective Method for Producing Self-Supporting Pd Alloy Membrane for Use in the Efficient Production of Coal-derived Hydrogen

James Arps, Ph.D. Southwest Research Institute May 17, 2006

Project ID #PD14

Overview

Timeline

- Project start: Sep. 09, 2003
- Project end: Sep. 08, 2006
- Percent complete: ~85%

Budget

- Total project funding (3 year)
 - DOE share: \$775,771
 - Contractor share: \$194,200
- Funding received in FY05*
 - \$258,606
- Funding for FY06*
 - \$263,671

Barriers

- Barriers addressed
 - N. Defects (high yield, large area)
 - O. Selectivity (>99.9%)
 - Q. Flux (>100 scth/ft²)
 - S. Cost (<\$1500/ft²)

Partners

- Colorado School of Mines (D. Way)
 - H₂ permeation measurements
 - Membrane characterization
- IdaTech (W. Pledger)
 - Large-scale testing
 - Sealing
 - Module demonstration

Project Objectives

Overall DOE Goal: Develop technologies that effectively and economically separate hydrogen from mixed gas streams that would be produced by coal gasification

- Develop a process methodology for the cost-effective manufacturing of thin, dense, self-supporting palladium (Pd) alloy membranes for hydrogen separation from the mixed gas streams of coal gasification processes,
- Reduce Pd membrane thickness by >50% over current stateof-art, and show potential to meet DOE 2010 technical targets.
- Demonstrate viability of using large-area vacuum processing to "engineer" a membrane microstructure that optimizes hydrogen permeability, separation efficiency, and lifetime,
- Demonstrate efficacy of large-batch and/or continuous roll-toroll manufacturing of membrane material with performance and yields within pre-defined tolerance limits
- Demonstrate separation efficiency of thin palladium membrane in commercial-type fuel processor using mixed gas streams.

Plan and Approach

• Year 1 (Complete)

An IDACORP Compan

- Task 1: Magnetron Sputter Deposition of Pd-Cu Alloys on Small Samples
- Task 2: Development of Backing Removal Techniques
- Task 3: Materials Characterization of Sputtered Pd-alloy Membranes
- Task 4: Pressure and Purification Testing
- Task 5: Prototype Module Design

- Year 2 (Complete)
 - Task 1: Fabrication of Larger Area Membranes
 - Task 2: Optimization of Membrane Composition/Microstructure
 - Task 3: Refinement and Downselection of Backing Removal Methods
 - Task 4: Production of Membranes at least 75 in² in Area
 - Task 5: Prototype Module Construction

- Year 3
 - Task 1: Final Optimization/Selection of Membrane Alloy Composition (Complete)
 - Task 2: Pressure and Purification Testing Pilot-Scale Membranes (50% Complete)
 - Task 3: Prototype Module Final Assembly and Testing (50% Complete)
 - Task 4: Develop Cost Estimates for Production of Pd Membranes (25% Complete)

Thin Film Activities at SwRI

- Six large chambers utilize a variety of vacuum based coatings and surface treatments.
- Recent DOE projects in:
 - Boiler tube coatings
 - SOFC interconnects
 - PEMFC catalysts

Membrane Fabrication – Flexible Substrates

- Concurrent and sequential e-beam evaporation
 - Utilized DOE approach to screen variables (dep/feed rates, drum temperature, etc)
 - Established level of significance with EIES (optical) control
 - Typical deposition rates between 0.8-1.2 nm/sec at feed rate of 0.12 m/sec

<u>Co-Evap</u>

Sequential

Multiple Steps

Post Treatment

Pros Simple, Fast (High Rate)

Compositional Control over large areas, Fast

- Cons Compositional control over large areas
- Magnetron Sputtering (60/40 alloy target)
 - Good composition (tiling) /strain control
 - Control of density
- Successful deposition on PS, PI, PVA, PE, and PET
 - Over 200 linear feet of material produced
 - Demonstration over large areas (75 in2)
 - Issues with defects and stress control at thicknesses less than 12 um

Web roll coater with

Membrane Fabrication – Rigid Substrates

- Formation of free-standing, gas impermeable Pd-Cu membranes up to 110 in^2 in area and less than 5 μ m thick, using rigid backing materials such as glass and silicon.
- Formation of free-standing, Pd-Cu membranes as thin as 1 μm with minimal defects.

An IDACORP Company

Process Optimization

 Conducted statistical DOE to identify conditions for production of defect– free films on silicon wafers with easy release (neutral film stress)

Power (kW)	Flow (sccm)	Press (mtorr)	Angle (deg)	lon	Stress
0.27	21.3	0.3	0		
0.28	24	0.24	10	Assist	
0.28	27	0.3	10	Clean	

CSM Membrane Test Cell

Permeate and Sweep

Part Number	Description
1	Graphite Gasket for Sealing
2	Membrane
3	Ceramic Paper (Diffusion barrier)
4	Porous Stainless Steel Support
5	Feed and Residue attachment
6	Permeate and Sweep attachment

CSM Permeation Apparatus

Part Number	Description
1	Idle Pressure Gauge
2	High Pressure Test Gauge
3	Low Pressure Test Gauge
4	Membrane Housing
5	Back Pressure Regulator
6	3-way valves

Test Conditions

- Feed Conditions
 - Pure hydrogen at 20 psig or pure helium at 20 psig
- Permeate Conditions
 - Gauge pressure of 0 for all runs
 - Atmospheric pressure in Golden, CO = 12 psia

- Temperatures
 - Most permeation measurements are taken at 400°C
 - Membranes are run at temperatures ranging from 250°C to 550°C

Measured H₂ Flux Has Surpassed Program Goals

- Best performance data @ 400 °C shown for a 2.5 µm Pd-Cu alloy foil, area = 2.6 cm²
 - Pure H₂ permeability = 8 •10⁻⁵ cm³•cm/cm²•s•cmHg^{0.5}
 - H_2 Flux = 124 cm³/cm²•min = 242 scfh/ft²
 - Feed pressure = 20 psig
- Exceeds DOE Hydrogen Program and 2010 DOE Fossil Energy targets

Time (hours)

erformance Criteria	SwRI Membrane	2007 Target	2010 Target	2015 Target	
lux scfh/ft ² @ 100 psi DP H ₂ partial ressure & 50 psid	564	100	200	300	

Extended Testing of SwRI Membrane

- Demonstrated separation of >99.95% pure hydrogen from helium
 Perfect H₂ selectivity measured throughout the test (i.e. no pinholes or other defects)
- •Short term testing at 50 psig differential pressure without rupture
- •Hydrogen permeability = 1.09E-4 cm³(STP) cm/cm² s cmHg^{1/2}

Influence of Temperature on Permeability of 60 wt% Pd Foil

- Demonstrated maximum permeability at 400 C
- SwRI membranes match the Wilkinson and McKinley data both in permeability and composition
- 60-40wt% PdCu composition has been verified by EDX

Module Development and Testing at Idatech

- Measured H₂ flux of 420 SCFH/ft² (400°C and 100 psig) on smaller samples provided by SwRI.
- Investigating gasketing arrangements to reliably seal thin membranes.
- First full-scale module test expected in coming weeks
- More than a dozen full-size prototype membranes have been delivered to Idatech

Cost Projections

- Off-the-shelf semiconductor equipment should be adaptable for large-scale membrane production
 - Estimated throughput of ~25 ft²/hr with a single cluster tool
- Currently costs SwRI ~\$1500/ft² to produce Pd alloy membranes in small quantities (few ft² per day)
- Raw materials cost is not the most significant factor
 - 3µm thick 60wt% membrane, has
 ~\$21/ft² of Pd (assuming \$350/oz)

Novellus INOVA xT

- Continue efforts to establish reliable sealing methods for ultra-thin membranes
- Ternary alloy development (Pd-Cu-X)
 - Early-stage collaborations with LANL (Steve Paglieri) and CMU (David Sholl)
- Full-Scale Prototype Module Demonstration
 - Target production rate of 50 cm³/cm²-min of 99.95% pure hydrogen
- Prepare a more detailed cost analysis of membrane production process

Project Summary

- Relevance
 - Robust, high efficiency methods to extract pure hydrogen from coal gas and other sources is critical to the development of a hydrogen economy
- Approach
 - Use a novel, scalable vacuum deposition method to fabricate free standing Pd alloy hydrogen separation membranes and evaluate their performance
- Accomplishments
 - Produced some of the thinnest (3 um), largest area (110 in²), highest performance separation membranes ever reported

Summary (Cont'd)

	2005 DOE Target	2010 DOE Target	SwRI
Flux (scfh/ft²)	100	200	242
Cost (\$/ft ²)	1500	1000	1500
Hydrogen Quality	99.9	99.95	99.95
DP Operating Capability	200	400	100

Collaborations

 Strong commercial partner in Idatech, long track record testing hydrogen membranes at CSM, new interactions with LANL and CMU

Future R&D

 Test under more aggressive conditions, develop new ternary alloy formulations with increased durability, demonstrate lowcost pilot production

Backup Slides

- Future work should include some lifetime tests to evaluate the stability of the membrane over time.
 - Membranes have been tested up to 300 hours at 400°C
 - A lot of bottled hydrogen is needed for these tests
- With better matrix experiment design, approach should lead to significant results
 - Statistic DOE has been implemented in optimization of membrane stress, release, and defect density.
- Hydrogen purity levels derived in recent tests (99.95%) would be insufficient for direct use in fuel cell vehicles
 - Further increases in purity are possible, Idatech has demonstrated membrane purification to <1 ppm CO and <5 ppm CO_2 .

- Fabrication of Self-Supported Pd Alloy Membranes Using Vacuum Deposition Methods, International Conference on Metallurgical Coatings and Thin Films, San Diego, CA, May, 2005
- Ultra-thin Palladium Alloy Membrane for Hydrogen Gas Separation, J. Arps, B. Lanning, G. Dearnaley, *Technology Today*, April 2006
- Development of Ultra-Thin, Large-Area, Self-Supported Palladium Alloy Membranes for use in Efficient Production of Coal Derived Hydrogen, 9th International Conference on Inorganic Membranes, Lillehammer, Norway, June, 2006

- Performance and durability in more realistic syngas environments
 - bcc Pd alloys are known to be sensitive to sulfur
- Demonstrate ability of vacuum deposition method to produce membranes at low cost and in large quantity
 - Several industrial examples prove such methods can be cost effective
- Pressure and sealing issues for thin membranes can be overcome with advanced designs

