Evaluation of a *Continuous* Calcium-Bromine Thermochemical Cycle

Richard D. Doctor Argonne National Laboratory May 17, 2006 – 1:30 PM

This presentation does not contain any proprietary or confidential information

Project ID # PD 16

OVERVIEW: Evaluation of a Continuous Ca-Br H₂ Cycle Timeline Barriers

- Start Oct 2005
- End June 2006
- Complete: 75%

Budget

- Total project funding
 DOE share 100%
- Funding FY05 \$249K
- Funding FY06 \$500K

Barriers addressed

- Develop continuous process from batch
- Improve H_2 yield from HBr
- Integrate heat for higher efficiency

Partners

 University of South Carolina OBJECTIVE: Evaluation of Continuous Ca-Br H₂ Cycle Argonne will evaluate the Ca-Br cycle for H₂ and assess whether it is practical. The two focus areas of research during FY05:

- Argonne will examine cold plasma or electrolytic methods for the hydrogen generation as a replacement for the iron bromide/oxide reaction beds in the UT-3 cycle (earlier Japanese work),
- and also investigate the feasibility of a continuous molten spray reactor approach for the HBr generation step.

OBJECTIVE: Argonne Ca-Br looks to eliminate the last 2 stages of UT-3 cycle

[1] Water splitting with HBr formation (1000 K)

 $CaBr_2 + H_2O \leftrightarrows CaO + 2HBr$

[2] Oxygen recovery (823 K)

 $CaO + Br_2 \leftrightarrows CaBr_2 + 0.5O_2$

[3] H_2 production and Br_2 regeneration (338 K)

PEM electrolysis or a non-thermal plasma will be used

2HBr + plasma $rac{}{\Rightarrow} H_2 + Br_2$

The overall goal – make the batch process continuous

CaBr₂ + H₂O → CaO + 2HBr is endothermic with Δ H_o= 43.38 kcal gmol ⁻¹ at 730°C

27 22

Argonne Modified (from UT-3) Calcium-Bromine cycle for Nuclear H₂

Advantages

✓ H₂ production continuous near ambient using plasmatron – alternative HBr from hot electrolysis (bench-tests) – and HBr PEM electrolysis (Weidner)

✓ H2 production at low temperature & low pressure worked synergistically with front end

Process efficiency ~45%(no costs)

Disadvantages

- **×** 72% volume change CaO → CaBr₂
- **x** Br_2 , O_2 at high temperatures (823K)
- **x** Batch-staging still employed for Ca

Process Design for the Ca-Br Cycle

8

Earlier studies with H_2S plasma-chemistry support investigation of 2HBr \rightarrow H_2 + Br_2

- Plasma Chemical production of H₂ and Br₂ at low temperature and low pressure from HBr may show significant advantages over electrolysis.
- HBr has been theoretically studied by Nestor, et al.

Configuration for HBr Plasma-chemical experiments

Plasma chemical reactors adjust dimensions so that a resonant H_0 mode is established

Cited from Buro R. Tschaggelar

http://www.ibrtses.com/simulations/microwaveresonator.html

Construction and pre-testing of an HBr cold plasma dissociation experiment apparatus

Plasmatron & H₂ compression to PSA and pipe. This route takes advantage of the low pressures that will favor the first stage hydrolysis reaction

PEM electrolysis assembly for the production of hydrogen from HBr in the Ca-Br cycle as well as non-thermal plasma

John Weidner, U of South Carolina preprint for Intl. J. of Hydrogen Engineering shows excellent performance

Figure 7: The current-voltage response for SO₂ (\blacktriangle) and HBr (ϕ) electrolysis in a PEM electrolyzer. The results for the SO₂ electrolysis are the same as that given in Figure 5 but with a wider voltage scale. The HBr electrolyzer was operated at 80°C, 1.0 atm, and 50% conversion with a RuO₂ loading on the anode and cathode of 2.0 mg/cm².

CaBr₂ + H₂O \rightarrow CaO + 2HBr is endothermic $\Delta H_o = 43.38$ kcal gmol ⁻¹

UT-3 efforts were always heat transfer limited, this means excess steam was the principal

heat input [MASCOT facility- Nakayama, 1984]

.

188

T. NAKAYAMA et al.

Initial CaBr₂ Droplet Model

CaBr₂ Hydrolysis will begin with steam reactions over unsupported CaBr₂

Propo

Anhydrous CaBr₂ melting ~780 °C after sparging He into melt

Technical Progress: Ca-Br-H₂O Efficiencies of 45% appear reasonable

Calcium-Bromine Water-splitting Cycle Heat Balance

Basis: 1,000 kg/hr H ₂				MW _{Thermal}		Efficiency	MW _{Electric}
	T _{<i>IN</i>} (K)	T _{OUT} (K)	IN	BRAYTON	REJECT	%	
10 - Reagent Steam	325	1050	4.765			-	
20 - [1] $CaBr_2 + H_2O \Rightarrow CaO + 2HBr$	1050	1000	32.677				
30 - [2] CaO + Br ₂ \Rightarrow CaBr ₂ + 1/2O ₂	850	850		-7.900			-3.713
40 - [3] 2HBr → Br ₂ + H ₂ (50% conversion)	350	600			-1.684	47.0%	13.471
40 - Plasmatron delivered power efficiency						75.0%	
40 - Compression for PSA	370	330	18.599		-11.073	;	
50 - Pressure Swing Adsorption - Recovery turbine	e						-2.257
60 - Electric Power Generation			18.022		-9.555	47.0%	-8.470
70 - Cooling Water	325	340					0.808
60 - Ancillary - controls, services, etc. (1.2%)							0.162
	SUM		74.063	-7.900	-22.311		0.000
Hydrogen Production (Lowe	Hydrogen Production (Lower Heating Value) =						45.0%

NHI Calcium-Bromine Cycle

- The best portions earlier Ca-Br cycles have been refined by the current NHI program and will be retained
- Early thermodynamic and process design links have helped us to avoid some unproductive pathways
- Some basic thermodynamic data is still needed for Ca-Br but these problems are being understood (for example, the behavior of eutectic CaBr₂-CaO)
- HBr dissociation is practiced today using lowtemperature electrolysis – two routes, a refined PEM cell are ready for laboratory testing

NHI Calcium-Bromine Cycle

- While the supported Calcium system could be refined, we are pursuing a more aggressive development route looking at a continuous process
- Plasma H₂ recovery should avoid special materials the assembly and testing of the plasmatron is in good order It will be necessary to consider externalities – efficiencies of 45% are reasonable

Technical Accomplishments/ Progress/Results

- All project efforts now focus on a continuous process to provide a better opportunity to meet the challenges of kinetics, materials, and operational issues using laboratory experiments
- Two laboratory routes to forming HBr (PEM and nonthermal plasma) are in the testing stage. Both of these show advantages over the UT-3 route
- A continuous process for molten CaBr₂ hydrolysis appears feasible laboratory construction is near complete for final testing
- High efficiencies appear reasonable

Ca-Br Future Plans

ID	Task Name	2nd	Half	1st Hal	1	2nd Half	0.00	1st Half	2nd Ha	f	1st Halt		2nd Hal	f	1st Hall
		Q	3 Q4	Q1	02	Q3	Q4	Q1 Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
1	Ca-Br TASK APPROVAL		10/1			1							2		
2	1. Develop molten CaBr2 + steam reactor			1										_	1
3	Contract - planning, materials			Ъ.				1	1		1		1		1
4	Movable test-rig assembly			ý—		1			-		1				
5	Design and integration			-	i I						1				
6	Fumace	-							1		1				
7	Piping			Th					1						
8	Instruments			Th					1		-				
9	Laboratory preparation - 1000 K steam					<u>_</u>									
10	Spray-dryer assembly					T h			1		1				1
11	First tests of CaBr2 + steam			1			10/6		1		1				5
12	A - CaBr2/Steam parametric tests					i ii	•	<u>h</u>							
13	B - CaBr2/Steam - CaO separation & materials			1								_ h	1		
14	CaBr2 design decision					8			1			4.4/	26		0
15	CaBr2 optimization														
16	2. Develop CaO + Br2 regeneration		+	_				i i i i i i i i i i i i i i i i i i i	_		-		-	_	l l
17	Movable test-rig assembly		+						1		1				
18	Design and integration			T I		8									
19	Furnace								-		1				
20	Piping		The						1		1		1		
21	Instruments	-							1		1				
22	Shake-down testing			n *					1		1				
23	Analytical procedures	-							1						
24	A - CaO + Br2 parametric tests (initial)	-				1	b				1				
25	A - CaO + Br2 parametric tests (cont'd)	-					*								
26	B - CaO/CaBr2 separation & materials	-		1				· ·	1						
27	CaO design decision	-		1		1			1			A.	26		E
28	CaO optimization	-		1							1	¥.		-	

Ca-Br Future Plans

ID	Task Name	2nd H	alf	1st Half		2nd Half		1st Half		2nd Halt		1st Half		2nd Half		1st Half
29	3. MR-CAT Cell CaO and CaBr2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
30	Cell Construction	_	* +			1			1	-		1		1		
31	Test rin assembly			1					1							
32	Beam-time	_			1	7/24			1	1		1				
32	Task 1 - Crustal membeloau	-				-J	-		i .							
24	Boam time	_		ł		-	-		1	-		1		1		
26	Task 2 - Crustal membeloau			1		1	-	11/24	-	I	_	i i				
30	Page the			1		1		_	-		- 5			1		
30	Beam-ome	_		1		1			i i	1	•	11/23		1	_	
31	Optimize run - crystal morphology		_						1					1		
38	4. Inermodynamic Properties		¥.		_				1							
39	Contract thermodynamic properties testing			4					1							
40	Develop thermo properties software								1	1						
41	Select equations of state					1			1			1		1		1
42	Develop fluid dependent parameters			1					1							
43	Evaluate existing experimental data								i			1		-		
44	ID required experimental measurements								1							
45	Assemble thermo-properties test rig					h			1			1		-		
46	Experimental measurements		1	1				Carllenner	1	Series and						
47	5. HBr Dissociation and recovery		_					-	(-			_	
48	Contract - Plasmatron		Ť	1					1	1		1				
49	Model HBr dissociation		-	1	Ъ				1	1						1
50	Refine HBr dissociation model			1	*			-	h			1				
51	Optimize HBr dissociation model	_			-	1			1	1		1	1			1
52	Design movable test rig assembly			*	-				-	1		1	120			
53	Construct HBr dissociation test			1					1	1						1
54	HBr dissociation tests					1	-		1	- L				1		
55	Modification of HBr dissociation apparatus			i.		1		1	Î	-		1				1
56	Optimize process energy characteristics	_							1			+		1		
57	Results and reporting	-							1			-		-	_	1

Ca-Br Future Plans

Recent Publications

- 1. James Sienicki, David Wade, Anton Moisseytsev, Won Sik Yang, Sang-Ji Kim, Michael Smith, Gerardo Alberti, Richard Doctor, Diana Matonis, "Hydrogen/Power Plant Design – STAR Performer," Nuclear Engineering International, **50**:612 (July 2005).
- Doctor, R.D., D.T. Matonis and D.C. Wade, *Hydrogen Generation Using a Calcium-Bromine Thermochemical Water-Splitting Cycle*, OECD NUCLEAR ENERGY AGENCY, Nuclear Science Committee, Second Information Exchange Meeting on Nuclear Production of Hydrogen, Argonne National Laboratory, Illinois, USA (2 - 3 October 2003); printed in Nuclear Production of Hydrogen, NEA No. 5308 (2004).
- Wade, D.C., R. D. Doctor, J. J. Sienicki, D.T Matonis, R.S. Faibish and A.V. Moisseytsev, STAR-H2: A Long-Refueling Interval Battery Reactor for Hydrogen and Water Supply to Cities of Developing Countries, 5th International Conference on Nuclear Option in Countries with Small and Medium Electricity Grids, Dubrovnik, Croatia (May 16-20, 2004).
- 4. Doctor, R.D., D.T. Matonis, D.C. Wade, A.V. Moisseytsev, J.J. Sienicki, and R.S. Faibish, STAR-H2 with a Calcium-Bromine Cycle: Delivering Hydrogen, Electricity and Water from a Modular Reactor Preliminary Design for a 5-MW Test System, American Institute of Chemical Engineering 2004 Spring National Meeting, Session: 14004. Novel Hydrogen Generation Processes and Energy Applications IL, New Orleans, LA (April 25-29, 2004).
- Doctor, R.D., D.T. Matonis, and D.C. Wade, *Hydrogen Generation Using a Calcium-Bromine Thermochemical Water-Splitting Cycle*, Symposium on Nuclear Energy and the Hydrogen Economy – Sponsored by MIT Center for Advanced Nuclear Energy Systems, Cambridge, MA (Sept. 23-24, 2003).