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OVERVIEW: Evaluation of a 
Continuous Ca-Br H2 Cycle

BarriersTimeline
• Barriers addressed

– Develop continuous process 
from batch

– Improve H2 yield from HBr
– Integrate heat for higher 

efficiency 

• Start – Oct 2005
• End – June 2006
• Complete: 75%

• Total project funding
– DOE share 100%

• Funding FY05 $249K
• Funding FY06 $500K

Budget

• University of South 
Carolina

Partners
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OBJECTIVE: Evaluation of 
Continuous Ca-Br H2 Cycle
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Argonne will evaluate the Ca-Br cycle for H2
and assess whether it is practical. The two 
focus areas of research during FY05: 
– Argonne will examine cold plasma or electrolytic 

methods for the hydrogen generation as a 
replacement for the iron bromide/oxide reaction 
beds in the UT-3 cycle (earlier Japanese work), 

– and also investigate the feasibility of a 
continuous molten spray reactor approach for 
the HBr generation step.  
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OBJECTIVE: Argonne Ca-Br looks to eliminate 
the last 2 stages of UT-3 cycle

[1] Water splitting with HBr formation (1000 K)
CaBr2 + H2O CaO + 2HBr

[2] Oxygen recovery (823 K)
CaO + Br2 CaBr2 + 0.5O2

[3] H2 production and Br2 regeneration (338 K)
PEM electrolysis or a non-thermal plasma will be used

2HBr + plasma H2 + Br2 



The overall goal – make the batch 
process continuous

Gen IV heat (in) 

Process heat to power production (out)

Electricity (in)
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CaBr2 + H2O CaO + 2HBr is endothermic 
with )Ho= 43.38 kcal gmol -1 at 730oC
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12.7 kcal/mol

Early CaBr2 hydrolysis 
studies suggest that the 
some of the basic 
thermodynamic data 
needs refinement

CaBr2 hydrolysis – kinetic data for 1st

order reaction shows 
Ea= 12.7 kcal gmol-1 [53.1 kJ gmol-1]
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Argonne Modified (from UT-3) Calcium-
Bromine cycle for Nuclear H2

Advantages

T H2 production continuous near ambient 
using plasmatron – alternative HBr from 
hot electrolysis (bench-tests) – and HBr 
PEM electrolysis (Weidner)

T H2 production at low temperature & low 
pressure worked synergistically with front 
end

TProcess efficiency ~45%(no costs)

Disadvantages

Y 72% volume change CaO CaBr2

Y Br2, O2 at high temperatures (823K)

Y Batch-staging still employed for Ca
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Process Design for the Ca-Br Cycle
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Earlier studies with H2S plasma-chemistry 
support investigation of 2HBr H2 + Br2
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• Plasma Chemical 
production of H2 and Br2
at low temperature and 
low pressure from HBr 
may show significant 
advantages over 
electrolysis.

• HBr has been 
theoretically studied by 
Nestor, et al.

eV



Configuration for HBr Plasma-chemical 
experiments
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Plasma chemical reactors adjust dimensions 
so that a resonant H0 mode is established

Cited from Buro R. Tschaggelar   

http://www.ibrtses.com/simulations/microwaveresonator.html 
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Construction and pre-testing of an HBr cold 
plasma dissociation experiment apparatus

First successful test of non-thermal plasma generation on 
Argon gas at 10 l/min.  The power draw was 350 Watts; 
30-September 2005
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Plasmatron & H2 compression to PSA and pipe.  This route takes 
advantage of the low pressures that will favor the first stage 

hydrolysis reaction
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PEM electrolysis assembly for the production of 
hydrogen from HBr in the Ca-Br cycle as well 

as non-thermal plasma
John Weidner, U of South Carolina preprint for Intl. J. of Hydrogen Engineering
shows excellent performance
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CaBr2 + H2O CaO + 2HBr is endothermic 
)Ho= 43.38 kcal gmol -1

12.7 kcal/mol
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UT-3 efforts were always heat transfer limited, 
this means excess steam was the principal

heat input [MASCOT facility- Nakayama, 1984]
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Initial CaBr2 Droplet Model

Color scale is 
velocity 

magnitude

Inlet velocity  

3 m/s 1073 K 
steam

100 µm droplet
Re= 1.5

1 mm droplet
Re=15
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CaBr2 Hydrolysis will begin with steam 
reactions over unsupported CaBr2



Anhydrous CaBr2 melting ~780 oC 
after sparging He into melt
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Start of test



Technical Progress: Ca-Br-H2O 
Efficiencies of 45% appear reasonable

Calcium-Bromine Water-splitting Cycle Heat Balance

Basis: 1,000 kg/hr H2 Efficiency MWElectric

TIN (K) TOUT (K) IN BRAYTON REJECT %
10 - Reagent Steam 325 1050 4.765
20 - [1] CaBr2  + H2O   CaO + 2HBr 1050 1000 32.677
30 - [2] CaO + Br2  CaBr2 + 1/2O2 850 850 -7.900 -3.713
40 - [3] 2HBr    Br2 + H2  (50% conversion) 350 600 -1.684 47.0% 13.471
40 - Plasmatron delivered power efficiency 75.0%
40 - Compression for PSA 370 330 18.599 -11.073
50 - Pressure Swing Adsorption - Recovery turbine -2.257
60 - Electric Power Generation 18.022 -9.555 47.0% -8.470
70 - Cooling Water 325 340 0.808
60 - Ancillary - controls, services, etc. (1.2%) 0.162

SUM 74.063 -7.900 -22.311 0.000

Hydrogen Production (Lower Heating Value) = 33.333 MWThemal Efficiency Cycle = 45.0%

MWThermal
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NHI Calcium-Bromine Cycle
• The best portions earlier Ca-Br cycles have been 

refined by the current NHI program and will be retained
• Early thermodynamic and process design links have 

helped us to avoid some unproductive pathways
• Some basic thermodynamic data is still needed for Ca-

Br but these problems are being understood (for 
example, the behavior of eutectic CaBr2-CaO)

• HBr dissociation is practiced today using low-
temperature electrolysis – two routes, a refined PEM 
cell are ready for laboratory testing 
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NHI Calcium-Bromine Cycle
• While the supported Calcium system could be 

refined, we are pursuing a more aggressive 
development route looking at a continuous process

• Plasma H2 recovery should avoid special materials 
the assembly and testing of the plasmatron is in 
good order It will be necessary to consider 
externalities – efficiencies of 45% are reasonable 
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Technical Accomplishments/ 
Progress/Results

• All project efforts now focus on a continuous process 
to provide a better opportunity to meet the 
challenges of kinetics, materials, and operational 
issues using laboratory experiments

• Two laboratory routes to forming HBr (PEM and non-
thermal plasma) are in the testing stage.  Both of 
these show advantages over the UT-3 route

• A continuous process for molten CaBr2 hydrolysis 
appears feasible laboratory construction is near 
complete for final testing

• High efficiencies appear reasonable
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Ca-Br Future Plans
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Ca-Br Future Plans
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Ca-Br Future Plans
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