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OVERVIEW: Evaluation of a
Continuous Ca-Br H, Cycle

Timeline Barriers
Start — Oct 2005 » Barriers addressed
End — June 20006 — Develop continuous process
from batch

Complete: 75%

— Improve H, yield from HBr
— Integrate heat for higher

Budget efficiency
Total project funding
— DOE share 100% Partners

Funding FY05 $249K  ° Unive_rsity of South
Carolina
Funding FY06 $500K



OBJECTIVE: Evaluation of

Continuous Ca-Br H, Cycle

Argonne will evaluate the Ca-Br cycle for H,
and assess whether it is practical. The two
focus areas of research during FY03:

— Argonne will examine cold plasma or electrolytic
methods for the hydrogen generation as a
replacement for the iron bromide/oxide reaction
beds in the UT-3 cycle (earlier Japanese work),

— and also investigate the feasibility of a
continuous molten spray reactor approach for
the HBr generation step.



OBJECTIVE: Argonne Ca-Br looks to eliminate

the last 2 stages of UT-3 cycle

=\ Electrolysis

[1] Water splitting with HBr formation (1000 K)
CaBr, + H,O0 5 CaO + 2HBr
[2] Oxygen recovery (823 K)
CaO + Br, S CaBr, + 0.50,,
[3] H, production and Br, regeneration (338 K)
PEM electrolysis or a non-thermal plasma will be used
2HBr + plasma S H, + Br, 4



The overall goal — make the batch
process continuous

Gen IV heat (in)

Electr1c1ty (in)

Process heat to power production (out)



CaBr, + H,0O = CaO + 2HBr is endothermic
with AH_= 43.38 kcal gmol -'at 730°C

Activated complex
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/\ KT T T
Eo(=~ AH¥)
L (always positive)
Ei(=AH1%)
1 2 . 7 kca I/ mo (always positive)

—'f——_—“_ p—

AH . (positive)

Energy of reacting molecules

— Endothermic

“Distance” along reaction path

Early CaBr, hydrolysis
studies suggest that the
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CaBr, hydrolysis — kinetic data for 1st
order reaction shows
E_= 12.7 kcal gmol-' [63.1 kJ gmol-']
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Argonne Modified (from UT-3) Calcium-
Bromine cycle for Nuclear H,

Advantages Disadvantages
v H, production continuous near ambient X 72% volume change CaO — CaBr,

using plasmatron — alternative HBr from .
hot electrolysis (bench-tests) — and HBr X Bry, O, at high temperatures (823K)

PEM electrolysis (Weidner) x Batch-staging still employed for Ca

v H2 production at low temperature & low
pressure worked synergistically with front
end

v Process efficiency ~45%(no costs)



Process Design for the Ca-Br Cycle
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Earlier studies with H,S plasma-chemistry
support investigation of 2HBr = H, + Br,

« Plasma Chemical
production of H, and Br,
at low temperature and
low pressure from HBr
may show significant
advantages over
electrolysis.

« HBr has been
theoretically studied by
Nestor, et al.




Configuration for HBr Plasma-chemical
experiments
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Plasma chemical reactors adjust dimensions
so that a resonant Hy mode is established

Cited from Buro R. Tschaggelar

http://www.ibrtses.com/simulations/microwaveresonator.html
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Construction and pre-testing of an HBr cold
plasma dissociation experiment apparatus

Check for microwave leakage regularly.
See Instruction Manual before operating.
WAVEMAT inc. Plymouth, Ml

s T

First successful test of non-thermal plasma generation on
Argon gas at 10 I/min. The power draw was 350 Watts,
30-September 2005
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Plasmatron & H, compression to PSA and pipe. This route takes
advantage of the low pressures that will favor the first stage
hydrolysis reaction
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PEM electrolysis assembly for the production of
hydrogen from HBr in the Ca-Br cycle as well

as non-thermal plasma

John Weidner, U of South Carolina preprint for Intl. J. of Hydrogen Engineering
shows excellent performance
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CaBr, + H,O = CaO + 2HBr is endothermic
AH_= 43.38 kcal gmol -

Activated complex
transition state

Eo (=~ AH3*)
(always positive)
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UT-3 efforts were always heat transfer limited,
this means excess steam was the principal

heat Input [MASCOT facility- Nakayama, 1984]
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Initial CaBr, Droplet Model
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CaBr, Hydrolysis will begin with steam
reactions over unsupported CaBr,

———————————————————————

g TV

Propo
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Anhydrous CaBr, melting ~780 °C
after sparging He into melt




Technical Progress: Ca-Br-H,0O
Efficiencies of 45% appear reasonable

Calcium-Bromine Water-splitting Cycle Heat Balance

Basis: 1,000 kg/hr H, MW 1hermal Efficiency MWgecqric
TinEK) Toyr(K) IN BRAYTON REJECT %

10 - Reagent Steam 325 1050 4.765

20 - [1] CaBr, + H,O ®» CaO + 2HBr 1050 1000 32.677

30 - [2] CaO + Br, ®» CaBr, + 1/20, 850 850 -7.900 -3.713

40 - [3] 2HBr ®» Br, + H, (50% conversion) 350 600 -1.684 47.0% 13.471

40 - Plasmatron delivered power efficiency 75.0%

40 - Compression for PSA 370 330 18.599 -11.073

50 - Pressure Swing Adsorption - Recovery turbine -2.257

60 - Electric Power Generation 18.022 -9.555 47.0% -8.470

70 - Cooling Water 325 340 0.808

60 - Ancillary - controls, services, etc. (1.2%) 0.162
74.063 -7.900 -22.311 0.000

Hydrogen Production (Lower Heating Value) = 33.333 MWremal Efficiency cyge = 45.0%
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NHI Calcium-Bromine Cycle

The best portions earlier Ca-Br cycles have been
refined by the current NHI program and will be retained

Early thermodynamic and process design links have
helped us to avoid some unproductive pathways

Some basic thermodynamic data is still needed for Ca-
Br but these problems are being understood (for
example, the behavior of eutectic CaBr,-CaO)

HBr dissociation is practiced today using low-
temperature electrolysis — two routes, a refined PEM
cell are ready for laboratory testing
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NHI Calcium-Bromine Cycle

* While the supported Calcium system could be
refined, we are pursuing a more aggressive
development route looking at a continuous process

« Plasma H, recovery should avoid special materials
the assembly and testing of the plasmatron is in
good order It will be necessary to consider
externalities — efficiencies of 45% are reasonable
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Technical Accomplishments/
Progress/Results

All project efforts now focus on a continuous process
to provide a better opportunity to meet the
challenges of kinetics, materials, and operational
ISsues using Iaboratory experlments

Two laboratory routes to forming HBr (PEM and non-
thermal plasma) are in the testing stage. Both of
these show advantages over the UT-3 route

A continuous process for molten CaBr, hydrolysis
appears feasible laboratory construction is near
complete for final testing

High efficiencies appear reasonable
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-Br Future Plans
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a-Br Future Plans
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Br Future Plans
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