2006 DOE H₂ Program Review Alkaline Electrolysis

Project ID PD09

Samir Ibrahim/Joe Poindexter

A Teledyne Technologies Company

This presentation does not contain any proprietary or confidential information.

Background

Work stopped August 2005

- Safety issues presented during May 2005 Review
- Hurricane Katrina aftermath
- Work resumed April 2006
- Original goals
 - Low cost of produced H₂ by increased pressure and increased efficiency
 - Goals for 2006/07
 - Low cost of produced hydrogen by increased capacity and reduced capital/manufacturing costs

Overview

 Timeline Project start: April 2004 Project end: April 2007 	 Partners None at this time due to recent changes in primary objectives
 Budget Total funding: \$3,128,764 DOE share: \$1,563,882 TESI share: \$1,563,882 Expenditure '04: \$310,900 	Barriers & Targets addressed (overleaf)
 Expenditure '05: \$444,800 Expenditure '06: \$2,000 	TELEDYNE ENERGY SYSTEMS, INC A Teledyne Technologies Company

Overview

Barriers & DOE Targets addressed

- Power conversion, Module, BOP:
 - Cost: \$0.80/gge H2
 - Efficiency: 68%
- Compression, Storage & Dispensing:
 - Cost: \$0.77/gge H2
 - Efficiency: 94%
- Electricity: Cost: \$2.47 /gge H2
- O&M: Cost: \$0.71 / gge H2
- Total:
 - Cost: \$4.75/ gge H2
 - Efficiency: 64%

Objectives

- To advance water electrolysis and develop an Electrolytic Hydrogen Generator with the following features:
 - Low capital cost per unit produced hydrogen
 - Safe to use
 - Designed for Manufacture & Assembly
 - Increased H₂ Production capacity
 - Low life costs
 - Proven, reliable, affordable & durable.

Approach

- Develop and produce safe, low-cost, high efficiency alkaline water electrolysis system for hydrogen production.
 - Cost-share, DOE/TES
 - Hardware cost analyses
 - Detailed safety analyses
 - Benchtop system fabrication & testing
 - Prototype system design
 - TES only
 - Fabrication of prototype unit
 - Testing & Verification of prototype system

Approach

3 Major Components:

Electrolysis Module & System

- Dryer / Purification System
- DC Power Supply

Progress - Small Scale System

Small scale electrolysis system:

- Designed for 500 psig delivery pressure; MAWP of 1500 psig
- System easily configurable to run higher pressures
- Extensive safety analyses performed
- Operator safety, highest priority

Progress – Small Scale System

POWER SUPPLY

2005 Reviewers Comments

- Too much time and effort being spent on Pressure Control System
 - Pressure control critical for safe and reliable system
- Use rupture disks, pressure relief vales to raise electrolysis pressure >1000 psi
 - High pressure electrolysis adds significant cost to system, thus deviating from DOE's primary objective of low cost hydrogen

Future Work

- Close out original contract scope:
 - Test and verify operation of 500 psi prototype
- Achieve new contract objectives:
 - Complete design of a low cost, 150 psi alkaline generator, using DFMA
 - Fabricate prototype system
 - Test and verify lower cost, higher capacity 150 psi generator

Questions / Comments

TELEDYNE ENERGY SYSTEMS, INC.

A Teledyne Technologies Company

Publications and Presentations

- 2004 DOE Program Review Presentation. *Cohen, Ibrahim*, May 2004, Philadelphia, PA
- TESI High Pressure Electrolysis Progress. Cohen, Ibrahim, January 2005, Hunt Valley, MD
- 2005 DOE Program Review Presentation. *Ibrahim, Cohen*, May 2005, Arlington, VA

The most significant hydrogen hazard associated with this project is:

Potential mixing of H₂ and O₂

Hydrogen Safety

Our approach to deal with this hazard is:

- Numerical modeling, to predict, optimize sensor response
- Quality Assurance and leak-check of separators
- Monitoring product gases for cross-contamination
- Securing gas production, should mixing occur
- Design of unit to contain any pressure excursions

