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Overview
Timeline
• 6-1-2005
• 5-31-2009
• 25% completed

Budget
•Total Project Funding

$330,000 DOE ($180,00 via 
UNLV)

$  82,500 Cost share

•Funds received in FY05 

$  110,000 ($60,000 via UNLV)

Barriers
AU. High-Temperature 
Thermochemical Technology
AV. High-Temperature Robust 
Materials
AW. Concentrated Solar 
Energy Capital Cost
AX. Coupling Concentrated 
Solar Energy and 
Thermochemical cycles

Partners
Swiss Federal Research Institute (Aldo Steinfeld)



Objectives
• Research and develop a cost effective 

Mn2O3/MnO solar-thermal thermochemical 
cycle through theoretical and experimental 
investigation

• Based on the above, develop a process 
flow diagram and carry out an economic 
analysis of the best process option



Approach
• Develop an initial process flow diagram based on available 

published information regarding the cycle; simulate integrated 
process; identify key areas for research and development

• Develop and carry out an experimental plan to evaluate the 
feasibility of all steps in the cycle

• Carry out CFD modeling and simulation to develop an 
understanding of solar-thermal reactor transport mechanisms

• Analyze cost and efficiency metrics for integrated cycle 
performance; provide final process flow diagram based on 
best scenario



• Literature surveyed
• Preliminary flow sheet developed based on literature 

information (conventional processing)
• Very preliminary economics carried out
• Preliminary key areas identified for research (based on 

preliminary simulations and economics)
• Experimental work plan underway for major reactions

Technical Accomplishments/ 
Progress/Results
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Mn2O3/MnO Solar Cycle
• Advantages

– Relatively low temperature (~1650 oC, or lower)
– All solid/liquid species no recombination
– Can be performed in air

• Disadvantages
– Corrosive nature of NaOH
– Energy-efficient separation of NaOH/Mn2O3 difficult
– Three step cycle has decreased efficiency
– Multiple oxide species involved 



Goals
• Perform high temperature reaction with 

small particles in an aerosol flow reactor
• Verify hydrogen formation when NaOH is 

added to MnO at elevated temperatures
• Optimize hydrolysis and separation of 

reaction products for recycle into 1st and 
2nd steps

• Identify kinetics/mechanism



Key Challenges

• Solve separation problem in 3rd step for 
favorable economics: Currently 1 molar 
solution for 90% leaching necessary!

• Investigate effect of sodium carry-over to 
high-temperature reaction (10% residual)



Preliminary Flowsheet 
Development

• Based on literature only, a preliminary 
PFD was developed for the Mn2O3/MnO 
solar-thermal thermochemical cycle

• Only the most obvious and conservative 
unit operations were considered for this 
initial pass



Process Design Premises
• Mn2O3 dissociated (80%) in air at 1835 K
• NOx considered formed and dealt with via 640 K SCR
• Molten salt heat recovery system considered
• H2 production step carried out at reduced P; H2 removed to 

shift equilibrium to right (100%)
• 90% conversion assumed on water splitting step
• Multi-effect evaporator considered to recover NaOH
• H2 supplied to pipeline at 300 psig
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Process Simulation



Key Areas for Research
• Kinetics of Mn2O3 2 MnO + ½ O2 at reduced pressure to 

determine how low of a temperature the high step reaction 
can be carried out at (increases process efficiency) 

• Demonstrate 2nd and 3rd steps in the cycle and verify pinch 
points

• Develop an alloy (MnxMetalyOz) providing for a Na salt with 
improved solubility in water (i.e. to reduce the amount of 
water that needs to be distilled off to recover NaOH)



Experimental Work

• Rapid dissociation kinetics (Mn2O3 2MnO +1/2O2) 
investigation underway (SHGR funding in Yr 1)

• MnO + NaOH 1/2H2 + NaMnO2;  preliminary H2 liberating 
step experiments carried out

• NaMnO2 + ½ H2O 1/2 Mn2O3 + NaOH;  preliminary water 
splitting step experiments carried out
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TGA Decomposition 
Challenges

• Product sinters to crucible
– No product analysis possible

• Solution run under vacuum
– Performed some preliminary runs

• Have had initial problems keeping balance stable
– Can obtain 500 mtorr atmosphere during run



~1590oC

~940oC

Effect of Reduced Pressure
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• 10 °C/min to 1310°C

• Sample mass = 600 mg

• Some sintering of product to crucible

• Dark greenish color (as MnO)

• Oxygen = 21.6% (MnO = 22.6%)

• 10 °C/min to 1200°C

• Sample mass = 870 mg

• No sintering of product to crucible

• Partial reaction – product contains        
both Mn2O3 (brownish-red color) and 
MnO (dark greenish color



Experimental Results 
Support Thermodynamics

Reaction 1
Mn2O3 → Mn3O4

T = 650oC     P = 550 mtorr

Reaction 2

Mn2O3 → MnO

T = 1220oC     P = 0.1 atm



Reduced Pressure Studies 
Summary

Argon Flow Vacuum      
(500 mtorr)

3Mn2O3
2Mn3O4 + ½O2

1330 °C 750 - 850 °C

2Mn3O4
6MnO + O2

1580 - 1620 °C 1200 - 1310 °C

• Performing decomposition under reduced pressure 
conditions does reduce reaction temperatures

• Product oxygen mass content analyses indicate full
conversion to MnO



Horizontal Tube Furnace
• For study of 2nd and 3rd steps
• Pull sample into hot zone at desired temperature
• Online mass spectrometer

Mass 
Spectrometer

N
itr

og
en

H
2

S
ta

nd
ar

d

MFC

furnace
1/16” thermocouple



MnO + NaOH
NaMnO2 + ½H2

time (min)
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XRD Product Analysis
MnO + NaOH NaMnO2 + ½H2
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MnO + NaOH NaMnO2 + ½H2
NaMnO2 + H2O ½Mn2O3 + NaOH

• Challenges
– Optimize hydrogen production step

• Grinding MnO/NaOH mixture appears to increase conversion
– Separation of Mn2O3/NaOH solid species

• Further options
– Temperature based phase separation
– Mixed manganese oxides

• Prepare MnxFe1-xO and MnxZn1-xO with sol-gel process
• Verify hydrogen production with these mixed oxides
• Investigate the separation efficiency with NaOH

– Compare to Mn2O3/NaOH separation efficiency



Conclusions/Summary
• The Mn2O3/MnO cycle provides an opportunity for 

low cost renewable H2

- air in high temperature (HT) step
- HT < 1250 oC (possible metal alloy receiver)
- little MnO/O2 recombination concern

• Significant development needs made relative to 
process integration at large scale, NaOH recovery 
and NOx mitigation



Major Collaboration

• ETH-Zurich is working with CU on the design of a 
solar-thermal transport tube reactor to interface to 
their High Flux Solar Simulator

- reactor design
- heat transfer modeling
- experimentation 
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