Fundamentals of a Solar-thermal Mn₂O₃/MnO Thermochemical Cycle to Split Water

Todd Francis, Casey Carney, Hans Funke, & Al Weimer; University of Colorado (Boulder, CO)

16 May 2006

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- 6-1-2005
- **5-31-2009**
- 25% completed

Budget

Total Project Funding

\$330,000 DOE (\$180,00 via UNLV)

- \$ 82,500 Cost share
- •Funds received in FY05
 - \$ 110,000 (\$60,000 via UNLV)

Partners

Swiss Federal Research Institute (Aldo Steinfeld)

Barriers

AU. High-Temperature Thermochemical Technology

AV. High-Temperature Robust Materials

AW. Concentrated Solar Energy Capital Cost

AX. Coupling Concentrated Solar Energy and Thermochemical cycles

Objectives

- Research and develop a cost effective Mn₂O₃/MnO solar-thermal thermochemical cycle through theoretical and experimental investigation
- Based on the above, develop a process flow diagram and carry out an economic analysis of the best process option

Approach

- Develop an initial process flow diagram based on available published information regarding the cycle; simulate integrated process; identify key areas for research and development
- Develop and carry out an experimental plan to evaluate the feasibility of all steps in the cycle
- Carry out CFD modeling and simulation to develop an understanding of solar-thermal reactor transport mechanisms
- Analyze cost and efficiency metrics for integrated cycle performance; provide final process flow diagram based on best scenario

Technical Accomplishments/ Progress/Results

- Literature surveyed
- Preliminary flow sheet developed based on literature information (conventional processing)
- Very preliminary economics carried out
- Preliminary key areas identified for research (based on preliminary simulations and economics)
- Experimental work plan underway for major reactions

Literature Cycle

H₂O (vapor)

Mn₂O₃/MnO Solar Cycle

- Advantages
 - Relatively low temperature (~1650 °C, or lower)
 - All solid/liquid species \rightarrow no recombination
 - Can be performed in air
- Disadvantages
 - Corrosive nature of NaOH
 - Energy-efficient separation of NaOH/Mn₂O₃ difficult
 - Three step cycle has decreased efficiency

Multiple oxide species involved

Goals

- Perform high temperature reaction with small particles in an aerosol flow reactor
- Verify hydrogen formation when NaOH is added to MnO at elevated temperatures
- Optimize hydrolysis and separation of reaction products for recycle into 1st and 2nd steps
- Identify kinetics/mechanism

Key Challenges

- Solve separation problem in 3rd step for favorable economics: Currently 1 molar solution for 90% leaching necessary!
- Investigate effect of sodium carry-over to high-temperature reaction (10% residual)

Preliminary Flowsheet Development

- Based on literature only, a preliminary PFD was developed for the Mn₂O₃/MnO solar-thermal thermochemical cycle
- Only the most obvious and conservative unit operations were considered for this initial pass

Process Design Premises

- Mn₂O₃ dissociated (80%) in air at 1835 K
- NOx considered formed and dealt with via 640 K SCR
- Molten salt heat recovery system considered
- H₂ production step carried out at reduced P; H₂ removed to shift equilibrium to right (100%)
- 90% conversion assumed on water splitting step
- Multi-effect evaporator considered to recover NaOH
- H₂ supplied to pipeline at 300 psig

Process Simulation

Key Areas for Research

- Kinetics of Mn₂O₃ → 2 MnO + ½ O₂ at reduced pressure to determine how low of a temperature the high step reaction can be carried out at (increases process efficiency)
- Demonstrate 2nd and 3rd steps in the cycle and verify pinch points
- Develop an alloy (Mn_xMetal_yO_z) providing for a Na salt with improved solubility in water (i.e. to reduce the amount of water that needs to be distilled off to recover NaOH)

Experimental Work

- Rapid dissociation kinetics (Mn₂O₃→2MnO +1/2O₂) investigation underway (SHGR funding in Yr 1)
- MnO + NaOH → 1/2H₂ + NaMnO₂; preliminary H₂ liberating step experiments carried out
- NaMnO₂ + ½ H₂O → 1/2 Mn₂O₃ + NaOH; preliminary water splitting step experiments carried out

Mn₂O₃ TGA Decomposition ZrO₂ crucible in argon @ 10 deg C/min

TGA Decomposition Challenges

- Product sinters to crucible
 No product analysis possible
- Solution \rightarrow run under vacuum
 - Performed some preliminary runs
 - Have had initial problems keeping balance stable
 - Can obtain 500 mtorr atmosphere during run

Effect of Reduced Pressure

- 10 °C/min to 1310°C
- Sample mass = 600 mg
- Some sintering of product to crucible
- Dark greenish color (as MnO)
- Oxygen = 21.6% (MnO = 22.6%)

- 10 °C/min to 1200°C
- Sample mass = 870 mg
- No sintering of product to crucible
- Partial reaction product contains both Mn_2O_3 (brownish-red color) and MnO (dark greenish color

Experimental Results Support Thermodynamics

Reaction 1

- $Mn_2O_3 \rightarrow Mn_3O_4$
- T = 650°C P = 550 mtorr

Reduced Pressure Studies Summary

	Argon Flow	Vacuum (500 mtorr)
$3Mn_2O_3 \rightarrow 2Mn_3O_4 + \frac{1}{2}O_2$	1330 °C	750 - 850 °C
2Mn ₃ O ₄ → 6MnO + O ₂	1580 - 1620 °C	1200 - 1310 °C

- Performing decomposition under reduced pressure conditions <u>does</u> reduce reaction temperatures
- Product oxygen mass content analyses indicate <u>full</u> <u>conversion</u> to MnO

Horizontal Tube Furnace

- For study of 2nd and 3rd steps
- Pull sample into hot zone at desired temperature
- Online mass spectrometer

XRD Product Analysis MnO + NaOH \rightarrow NaMnO₂ + $\frac{1}{2}$ H₂

$MnO + NaOH \rightarrow NaMnO_{2} + \frac{1}{2}H_{2}$ $NaMnO_{2} + H_{2}O \rightarrow \frac{1}{2}Mn_{2}O_{3} + NaOH$

Challenges

- Optimize hydrogen production step
 - Grinding MnO/NaOH mixture appears to increase conversion
- Separation of Mn₂O₃/NaOH solid species
- Further options
 - Temperature based phase separation
 - Mixed manganese oxides
 - Prepare $Mn_xFe_{1-x}O$ and $Mn_xZn_{1-x}O$ with sol-gel process
 - Verify hydrogen production with these mixed oxides
 - Investigate the separation efficiency with NaOH
 - Compare to $Mn_2O_3/NaOH$ separation efficiency

Conclusions/Summary

- The Mn₂O₃/MnO cycle provides an opportunity for low cost renewable H₂
 - air in high temperature (HT) step
 - HT < 1250 °C (possible metal alloy receiver)
 - little MnO/O₂ recombination concern
- Significant development needs made relative to process integration at large scale, NaOH recovery and NOx mitigation

Major Collaboration

- ETH-Zurich is working with CU on the design of a solar-thermal transport tube reactor to interface to their High Flux Solar Simulator
 - reactor design
 - heat transfer modeling
 - experimentation

Acknowledgement

DOE Hydrogen Program

