gti

Forecourt Storage and Compression Options

> DOE Annual Merit Review and Peer Evaluation

Arlington, VA 16 May 2006

William Liss Gas Technology Institute

PDP 19

Overview

- > Timeline
 - Phase 1: June 2005 to February 2006
 - Phase 2: TBD

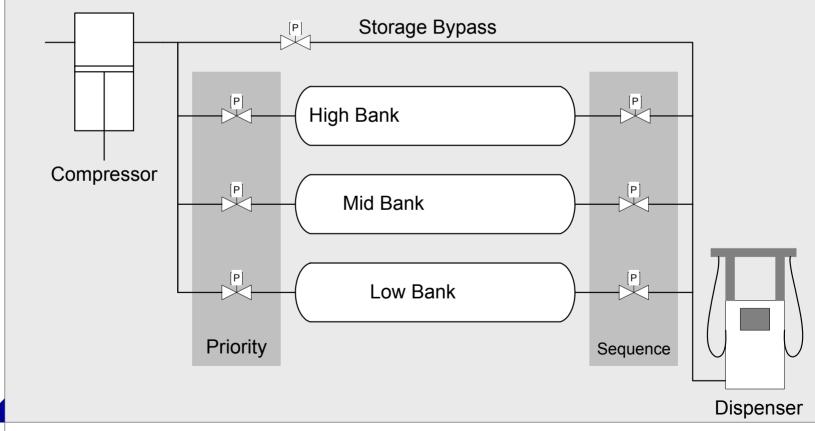
> Budget

- Phase 1: \$150 K (\$100 K limit through Feb '06)
- Phase 2: \$818 K

- > Barriers addressed
 - 3.2.4.2 F: Hydrogen
 Delivery Infrastructure
 Storage Costs
 - 3.2.4.2 H: Storage Tank Materials and Costs
- > Partners
 - Phase 1: None
 - Phase 2: TBD

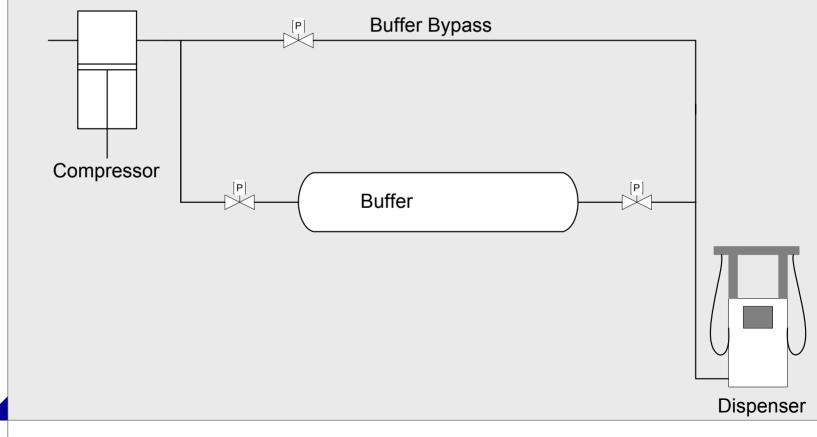
Objectives

> Examine technical feasibility and cost implications of a wide variety of forecourt compression and storage configurations


Approach

- > Update station sizing software tool
 - Allow for a wider variety of station configurations
- > Equipment cost data collection
- > Perform economic analyses
- > Examine additional tradeoffs
 - Cryo pump vs. compressor
 - Under ground vs. above ground
 - Advanced composites vs. steel

Station Configuration: Cascade Fill


- > Uneven demand from smaller vehicles
- > Sporadic demand from larger vehicles

Station Configuration: Buffer Fill

> Large vehicles fueling continuously

> Most fueling directly from compressor(s)

Station Configuration: Time Fill

- > Vehicles return to property for several hours
- > Total fill cycle will usually requires 8+ hours

Other Potential Configurations

Fueling Strategies

· Fill storage using compressor

inla

Slow Fill - With Multi-Stage Compressor and Large Storage

PDP 19

Hydrogen Station Sizing: CASCADE H2

- > Simulate compressed gaseous fuel station operation
 - Facilitates quick system sizing and tradeoff analysis
 - System compression and storage sizing
 - Matching station fuel supply to demand
 - Models peak fuel demand periods
 - Helps minimize capital costs and maximize utilization

Developed by GTI & available through: InterEnergy Software www.interenergysoftware.com

NATURAL GAS & HYDROGEN FUELING STATION SIZING

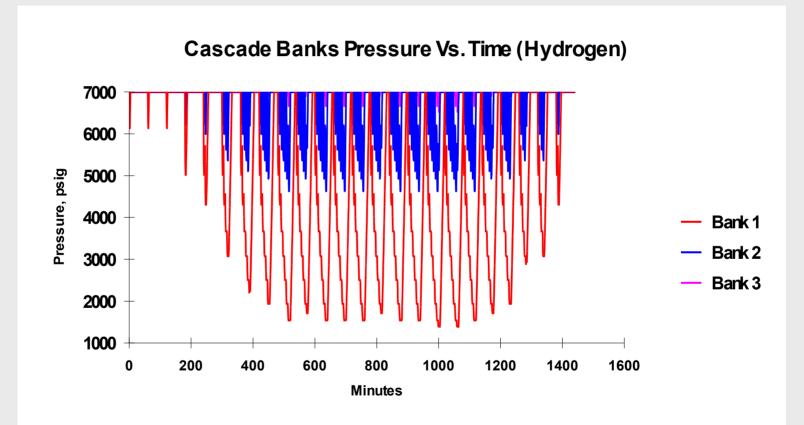
RCASCADE
File Next Help
Fuel C Methane C Hydrogen Equivalency ratio: 416 scf/gge Y
Fleet/Vehicle Characteristic
Fleet Size: 45 vehicles/day Total Storage Volume: 7 cu. ft. water volume
Vehicle Fuel Efficiency: 30 mpg 💌 Max. Storage Pressure: 5000 psig 💌 @70 *F
Daily Vehicle Route: 150 miles 💌
Dual Fuel Operation? NO Refueling Min. Diff. Pressure: 100 psi
Ground Storage Characteristics
Number of Storage Banks: 3 💌 Bank #1 Bank #2 Bank #3
Bank Storage Volume: cu. ft. water volum 💌 🛛 14 🛛 14
Bank Maximum Storage Pressure: psig 🗾 7000 7000 7000
Fleet Refueling Characteristics
Maximum Allowable Refueling Time: 5 minutes/vehicle <u>Vehicle Storage</u>
Time for Switching Between Vehicles: 5 minutes Temperature: 60 F
Refueling Operation Time: 20 hours per day Ground Storage
Number of Dispensers: 1 Temperature: 60 F
Run compressor during fueling? YES -

CASCADE H2 PRO Enhancements

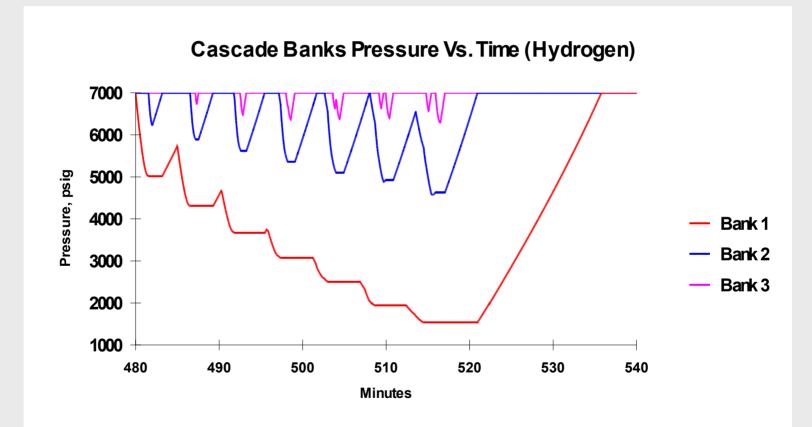
- > Improved system flow representation
- > Multiple, simultaneous vehicle fueling
- > User selectable maximum dispenser flow rate
- > Multiple vehicle types and flexible scheduling
- > User definable compressor characteristics
 - Power consumption, volumetric efficiency
- > Compressor electric power and demand calculation
 - Time of day and seasonal rates
- > Station life cycle cost analysis
- > Improved charting and reporting features

CASCADE H2 PRO Inputs

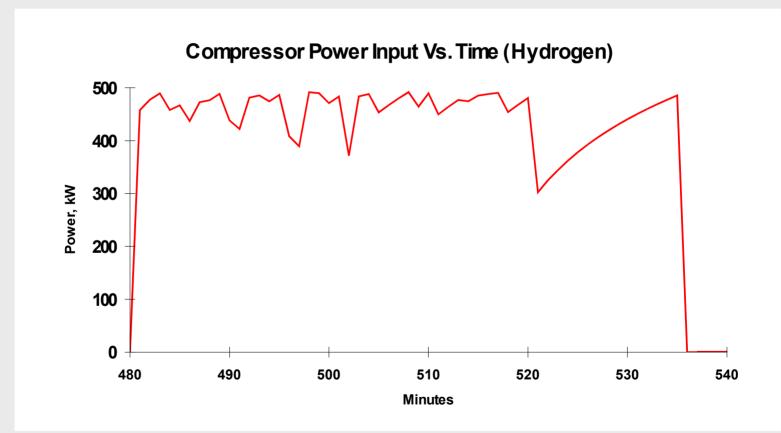
- > Variable configuration parameters
 - Vehicles (type and quantity), storage capacities and pressures, dispensers, peak flow
- > Variable cost elements
 - Peak and off peak electricity (seasonally), time dependent costs (per year), usage dependent costs (per kg)
 - Economic life, cost of capital, taxes, inflation, depreciation methods


/ehicle Storage/Refueling Ch	aracteristic				Unit Selection —
í A Ľ	В	Ĩ	C	D	💿 I-P (English)
Total Storage Volume:	8.5	cu. ft. water volu	^{me} Ve	hicle Description:	C SI (Metric)
Rated Storage Pressure:	5075	psig @ 59°F	De	escription for A	
Max. Allowable Storage Pre	ssure: 6344	psig			Fuel Hydrogen
Min. Allowable Storage Pres	ssure: 50	psig			Equivalency ratio:
Capacity Before Refueling:	12.5	% of Full			416 scf/gge
around Storage Characteristic	<u>s</u>				<u>Temperature</u>
lumber of Storage Banks:	3 🔹	Bank #1 Bar	nk #2 Bank #	3	Vehicle Storage
					59 ^{°F}
ank Storage Volume: cu. ft. w	vater volume	30	20 10		
			20 10 7000 7000	_	Ground Storage 59 °F
ank Maximum Storage Pressu	ire : psig @ 59°F		000 7000	Station Characteristics	
ank Maximum Storage Pressu			7000 7000		59 °F
ank Maximum Storage Pressu	ire : psig @ 59°F		7000 7000 Fueling Time for	Station Characteristics —	59 °F
	mpressor	7000 7	7000 7000 Fueling Time for Dispense Dispense	<u>Station Characteristics</u> Switching Between Vehic	:les: 3 minutes 7000 psig
ank Maximum Storage Pressu	ire : psig @ 59°F	7000 7	7000 7000 Fueling Time for Dispense	Station Characteristics Switching Between Vehic er Rating Point Pressure:	:les: 3 minutes 7000 psig
ank Maximum Storage Pressu	mpressor	7000 7	7000 7000 Fueling Time for Dispense Dispense	Station Characteristics Switching Between Vehic er Rating Point Pressure: er Rating Point Flow Rate er Min. Diff. Pressure:	59 °F : 3 minutes 7000 psig : 8 lb/min 100 psi
ank Maximum Storage Pressu	mpressor	7000 7	000 7000 Fueling Time for Dispense Dispense Number	Station Characteristics Switching Between Vehic er Rating Point Pressure: er Rating Point Flow Rate er Min. Diff. Pressure: of Dispensers:	59 °F sles: 3 minutes 7000 psig : 8 lb/min 100 psi 2
ank Maximum Storage Pressu	mpressor	7000 7	000 7000 Fueling Time for Dispense Dispense Number	Station Characteristics Switching Between Vehic er Rating Point Pressure: er Rating Point Flow Rate er Min. Diff. Pressure:	59 °F : 3 minutes 7000 psig : 8 lb/min 100 psi
ank Maximum Storage Pressu	mpressor	7000 7	7000 7000 Fueling Time for Dispense Dispense Number Run con	Station Characteristics Switching Between Vehic er Rating Point Pressure: er Rating Point Flow Rate er Min. Diff. Pressure: of Dispensers:	iles: 3 minutes 7000 psig : 8 lb/min 100 psi 2 ▼ YES ▼

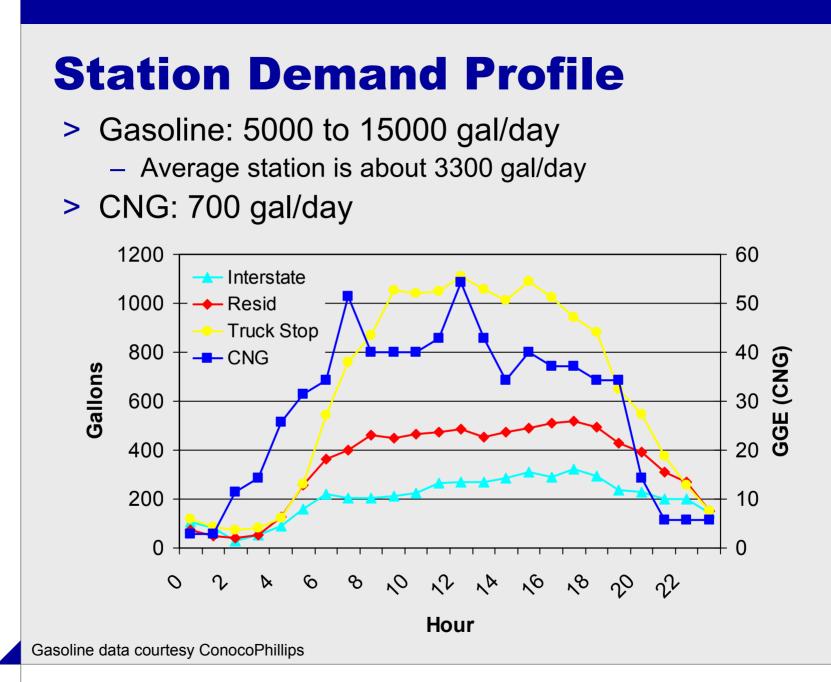
Electric Rates					
Summer			Winter		
Start			Starts	October 🗾	
	From Hour To	Rates	-	From Hour To	Rates
Demand On Peak	9:00 🖵 17:00 🖵	14.24 \$/kW	Demand On Peak	9:00 • 17:00 •	11.33 \$/kW
Energy On Peak	9:00 💌 17:00 💌	0.05022 \$/kWh	Energy On Peak	9:00 • 17:00 •	0.05022 \$/kWh
Energy Off Peak		0.02123 \$/kWh	Energy Off Peak		0.02123 \$/kWh
Tax: 0	%				
Depreciation Perio Finance Period % Financed Fin. Intrest Rate	10 years 0 % 10 %	Compressor -Equip1 Equip1 Equip2 Other Install Annual Electric Consumption	Add> Compressor Equip1 Equip2 Other Install , kwh 2,599,134	U_M Cost: Fix: Variable: 	0 \$/yea 0.2477 \$/lb Edit / View \$ 927911
Cost of Capital Tax Rate Inflation Rate Electric Rates	38.9 %	Annual H2 Consumption, Ib Annual Fix Salary Cost, \$	965,639 0	<u>Annual O M Cost,</u>	\$ 239189


CASCADE H2 Pro Results

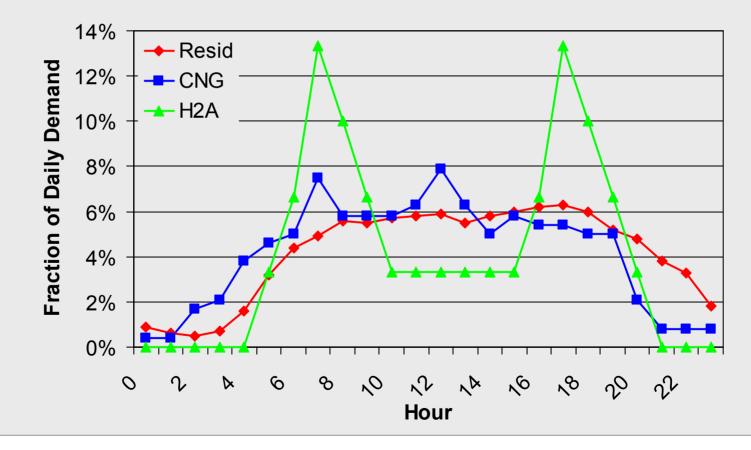
- > Performance
 - Cascade pressure, capacity
 - Compressor output, power, electric demand
 - Station and dispenser load profiles
 - Vehicles fully served (or not), maximum fill pressure, filling times
- > Economic
 - Net present value
 - Payback (simple and discounted)
 - Rate of return solver


Cascade Pressure

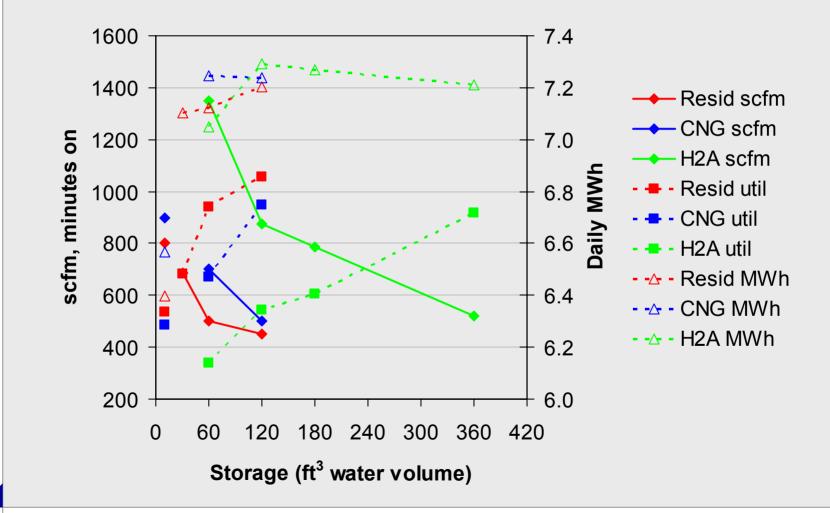
Cascade Pressure One Hour

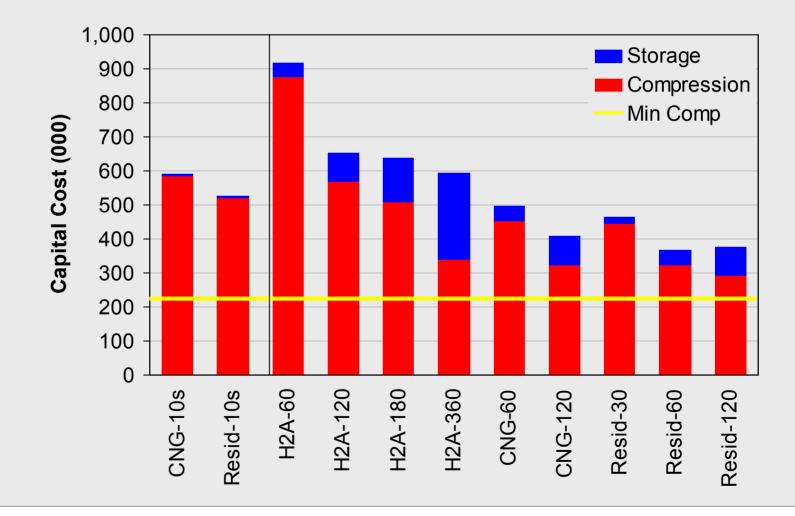

Compressor Power One Hour

Sample Analyses

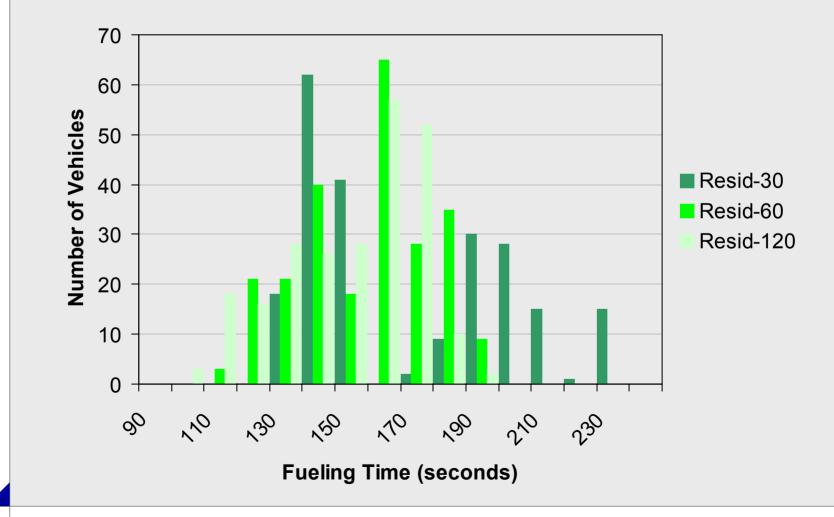

- > Different demand profiles normalized to 1200 kg per day
 - Gasoline data courtesy of ConocoPhillips
 - > Truck stop, interstate station, large residential station
 - Compressed natural gas (CNG) station

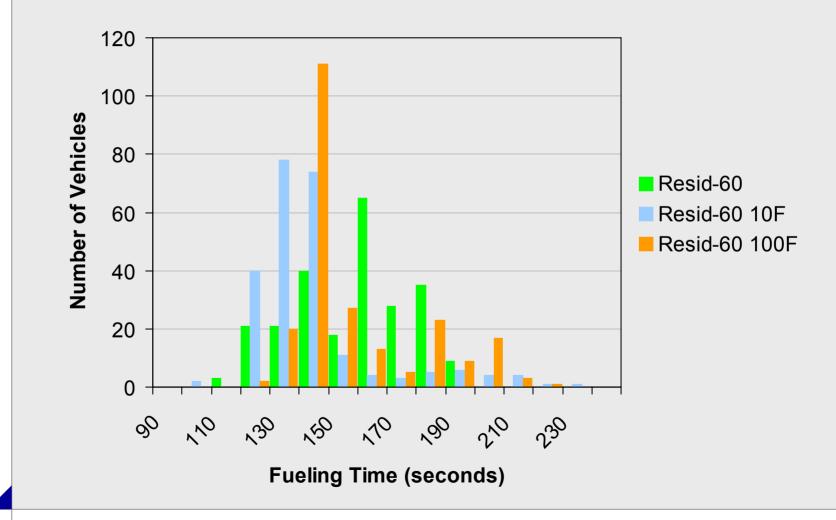
H2 Station Demand Profile


> Residential, CNG, and H2A profiles normalized to 1200 kg/day


H2 Station Sizing

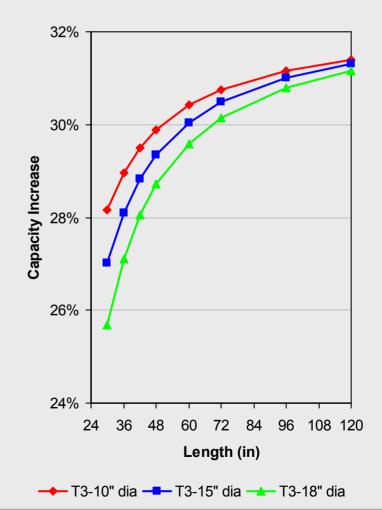
- > Used CASCADE to determine required compressor output for various cascade capacities for each load profile
 - Single bank cascade (10 ft³ water volume)
 - Three bank cascades
 - > 30 to 360 ft³ water volume
- > All simulations used 3-2-1 capacity ratios
 - Low bank (first used by vehicle) the largest
 - Marginal performance improvement relative to 1-1-1 ratio


Compressor-Storage Relation Compressor Size, Utilization, and Energy


Compressor-Storage Costs H2A Assumptions: \$4500/(kg/hr), \$818/kg

Vehicle Fueling Times Resid Profiles

Vehicle Fueling Times Resid Profiles, Ambient Temperature Effects



Vehicle Fueling Times								
	CNG		CNG			Resid		
	10s	10s	60	120	30	60	120	
Mean	243	264	136	144	173	149	145	
σ	34	28	22	24	42	19	20	
	CNG							
	60 60: 10F 60: 100F							
Mean	136	134		148				
σ	22	21		23				

70 MPa Considerations

- > Diminishing returns for vehicle storage
 - 35 to 70 MPa yields
 67% increase for gas
 properties
 - Same outer volume constraint: 25 to 31%
- Increased specific costs of fueling equipment
- Difficulties in limiting vehicle tank temperature during fueling

Future Work

- > Complete configuration analyses
- > Complete cost data collection
- > Perform economic analyses
- > Examine additional tradeoffs
 - Cryo pump vs. compressor
 - Under ground vs. above ground
 - Advanced composites vs. steel
- > Potential inclusion of impacts of 70 MPa fueling scenarios

Summary

- > CASCADE H2 PRO is designed to be a simple, yet powerful, tool for:
 - Assisting designers in analyzing complex station equipment interactions
 - Providing valuable performance and economics assessments
- > Version 1.0 is currently undergoing testing and review
 - Expected to be available for purchase in the second half of 2006
- > Initial analyses indicate some H2A assumptions may need revision

Contact Information

William Liss Director, Hydrogen Energy Systems Gas Technology Institute 1700 South Mount Prospect Road Des Plaines, IL 60018 (847) 768-0753 william.liss@gastechnology.org

www.gastechnology.org/hydrogen

