Autothermal Cyclic Reforming Based Hydrogen Generating System

Ravi Kumar, Court Moorefield, Parag Kulkarni, Gregg Deluga & Greg Gillette GE Global Research Mike Manning & Andrew Rosinski Praxair

May 2006

PDP 1

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Start Jan 2002
- Finish Mar 2006
- 100% Complete

Budget

- Total project funding
 - DOE \$2,382K
 - Contractor \$1,812K
- Funding received in FY05
 - \$490K
- Funding for FY06
 - \$160K

Barriers

- Barriers
 - > A. Fuel Processor Capital Costs
 - > B. Fuel Processor Manufacturing
 - > C. Operation & Maintenance
- Targets production & dispensing

	2005	2010	2015
Production Efficiency (LHV)	69	70	80

Partners

- Praxair Purifier
- University of California at Irvine
 Site

Objectives

Overall	 Design a generating & refueling systems that can meet the DOE efficiency target of > 69% (LHV) basis
	 Fabricate & operate an integrated 60 kg of H₂/day generating system to generate > 99.99% hydrogen with < 1 ppm CO
Last Year	 High pressure reformer & pressure swing adsorber
	 – Fabrication & Installation
	 Integration & Operation
	Update economic analysis

Technical Approach

Reformer	Minimize capital cost	
	 Design for 1000s of cold start cycles 	
	 Modeling of advanced control systems for stabilizing temperature and flows 	
	 Catalyst durability – thermal/RedOx cycles 	
	 Increase methane conversion 	
Shift	Increase CO conversion	
Pressure Swing	 Impurities – CO, Sulfur 	
Adsorber	 >75% recovery of Hydrogen 	
Safety & Permitting	 Gas Sensors – Lower Explosive Limit (LEL) Seismic zone 4 classifications Class I Div II explosion proof electrical 	

Autothermal Cyclic Reforming Process

Projected Efficiency is 71% (LHV)

Efficiency = LHV of H2 produced (kW) *100 = 71% LHV of CH4 fed (kW) + electricity required (kW)

Reformer Catalyst "A" Performed better than Catalyst "B"

Lab-Scale Reformer Catalyst Testing Projects Lifetime > 2,300 hrs

Both Reformer Reactors were Stable for Extended Periods

imagination at work

Pilot-Scale Reformer+Shift Met Targets of <10% CH_4 and > 70% H_2 (GC Data)

Autothermal Cyclic Reforming

10

Pilot-Scale Reformer+Shift Met Targets of <10% CH_4 and > 70% H_2 (CEMS Data)

Pilot-Scale Reformer was Operated Successfully for 60 hrs

Shift Reactor met target of < 1.5% CO

Praxair Pressure Swing Adsorber Pressures

PSA Product Impurities < 11 ppm

imagination at work

Pilot & Prototype PSA Generated > 99.999% H₂

			pilot	pilot	proto*
			3-bed	3-bed	3-bed
	flow	cfh	127.3	158.4	1556.4
	temperature	F	86.8	95.9	103.1
	H ₂	%	77.5	71.5	77.4
Feed data	CO ₂	%	19.2	25.1	19.4
	CO	%	0.7	0.7	0.8
	N ₂	%	0.7	0.7	0.2
	CH₄	%	2.0	1.9	1.7
bed pressure	low	psig	4.7	5.3	3.3
	high	psig	120.8	151.0	145.8
	ratio		7.0	8.3	8.9
product data	flow	cfh	74.9	70.9	692.6
	recovery	%	75.9	77.2	57.5 *
	bsf (total)	lb/tpd	5746	4947	8411
	purity	$\% H_2$	99.996	99.988	99.999
	CO ₂	ppm	nd	nd	nd
	CO	ppm	nd	nd	nd
	N ₂	ppm	44.4	122.7	nd
	CH₄	ppm	nd	nd	nd
Cycle	Total cycle time	sec	480	480	423

• Reformer was supplying of 75% of feed flowrate required by PSA which, by the nature of the theoretical PSA process, results in a lower hydrogen recovery than at design (100%) feed flowrate

Simulation Projects >72% Recovery of H2 in PSA at Full Load

	Exptl Results @ 75% Load	Model Results @ 100% Load
PSA Cycle Time – Secs	423	423
Feed Flow Rate – scfh	1,521	2,029
Product Flow Rate	695	1130
H2 Purity	> 99.999%	> 99.999%
H2 Recovery	> 59%	> 72%
Total Bed Size Factor – Ib/ TPD H2	8,425	5,179

Publications and Presentations

- Patent # 6,878,362 Issued to GE
- Patent # 6,792,981 Issued to Praxair

Summary

- Pilot-Scale Reformer Experiments
 - 60 hr extended overnight run
 - Syngas Concentrations
 - » CH₄ 0.5 –3% » H₂ 74%
- Prototype Pressure Swing Adsorber Experiments
 - Product Gas > 99.999% H2
 - Impurities (Mostly N_2) < 11 ppm
- Lab-scale catalyst durability testing projects reformer catalyst lifetime > 2,300 hrs

