Robust Low-Cost Water-Gas Shift Membrane Reactor for High-Purity Hydrogen Production from Coal-Derived Syngas

> Zhijiang Li, James Torkelson and Neng Ye Aspen Products Group, Inc. 186 Cedar Hill Street, Marlborough, MA 01752

2006 DOE Hydrogen Program Annual Merit Review

Arlington, VA May 16-19, 2006

This presentation does not contain any proprietary or confidential information

Project ID #: PDP 27

Overview

Timeline

- Start: June 1, 2005
- End: May 31, 2007
- ~40% Completed

Budget

- Total project funding
 - DOE: \$498k (80%)
 - Contractor: \$124.5k (20%)
- Funding received in FY06
 - \$249k (DOE)
- Funding for FY07
 - \$249k (DOE)

Barriers

- Membrane cost
- Catalyst durability
- Membrane durability

DOE Targets

- >30% cost reduction
- Tolerance to S, Cl, H₂O
- Equilibrium H₂ yield

Overall Objectives

Develop a WGS membrane reactor for H₂ production from coal-derived syngas

- Lower cost, >30% cost reduction over conventional processes
- Robust, tolerant to sulfur and chlorides

FY2006 Objectives

- Develop a contaminant-tolerant, highly active WGS catalyst
- Develop a contaminant-tolerant H₂ selective membrane
- Design a 50 L/h WGS membrane reactor

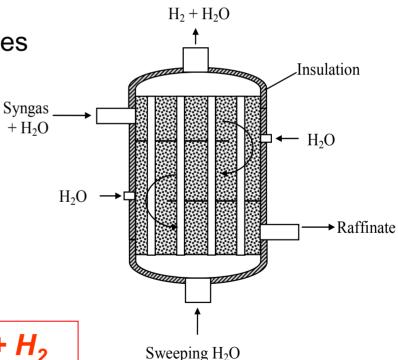
FY2007 Objectives

- Construct and test the 50 L H_2 /h reactor
- Scale up to 500 L H_2/h
- Modeling
- Perform an economic analysis

Approach

Shell-and-Tube Reactor Concept

- Consists of a contaminant-tolerant WGS catalyst and H₂-selective membrane tubes
- Enhances H_2 production with simultaneous H_2 separation to break equilibrium limitation $H_2 + H_2O$
- Simplifies downstream cleanup processes

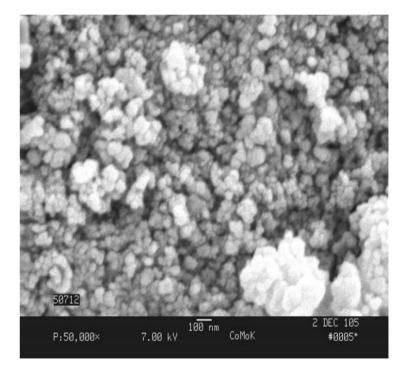

Technical Challenges

- Catalyst tolerance to S, Cl
- •Membrane tolerance to S, Cl, H_2O

Operating Conditions

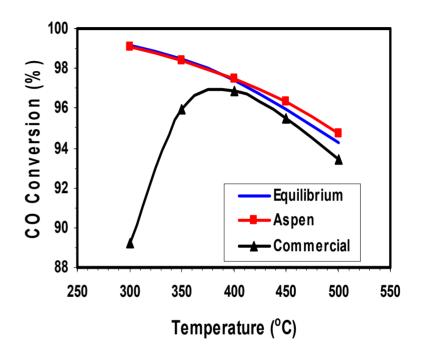
- 300-500 °C
- 300-500 psig on feed side

WGS Reaction: $CO + H_2O \Leftrightarrow CO_2 + H_2$


WGS Catalyst Preparation

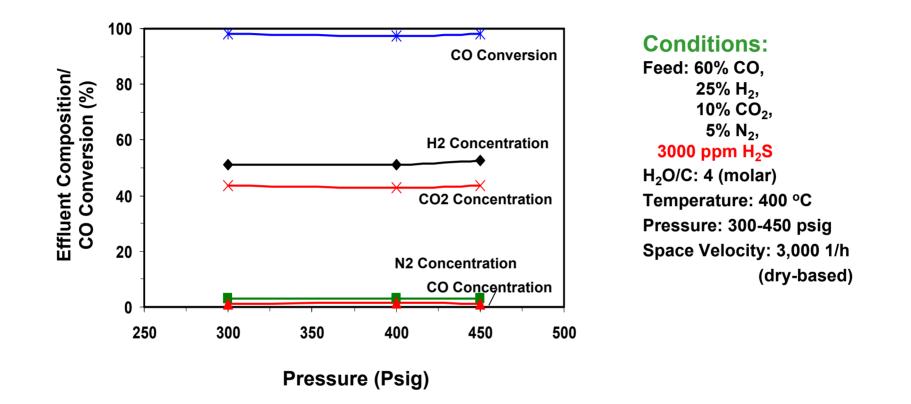
Catalyst Development Approach

- Promoted transition metal catalysts
- Supported and un-supported
- Low material and fabrication costs
- High surface area
- Stable phases
- Grain size: ~50 nm

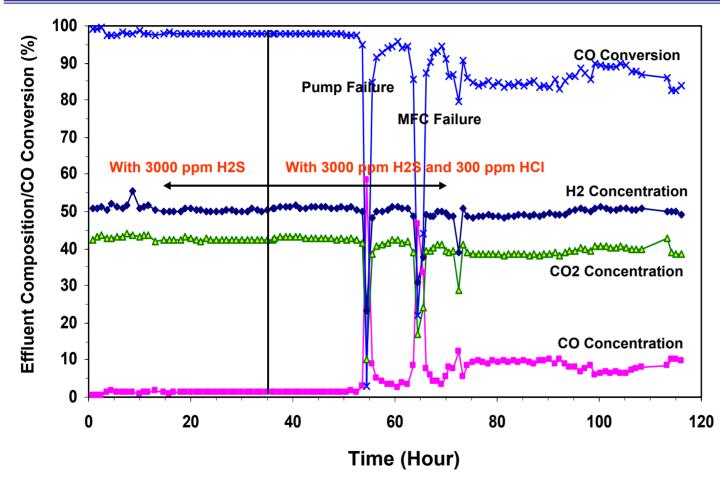

Catalyst Characterization

- Surface Area
- Pore size and volume
- Microstructure
- Crystalline Phases

WGS Catalyst Evaluation


- Identified a most active WGS catalyst
- Determined related operating conditions
- Demonstrated
 - sulfur tolerance to 3000 ppm
 - higher activity than some leading commercial WGS catalysts
 - equilibrium H₂ yield

Operating Conditions:


Feed: 60% CO, 25% H_2 , 10% CO₂, 5% N_2 , 3000 ppm H_2S H_2O/C : 4 (molar) Pressure: 400 psig Space Velocity: 3,000 1/h (dry-based)

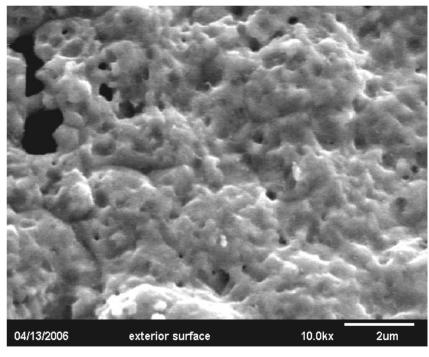
WGS Catalyst Evaluation

Equilibrium conversion was achieved in the range from 300 to 500 psig.

WGS Catalyst Stability

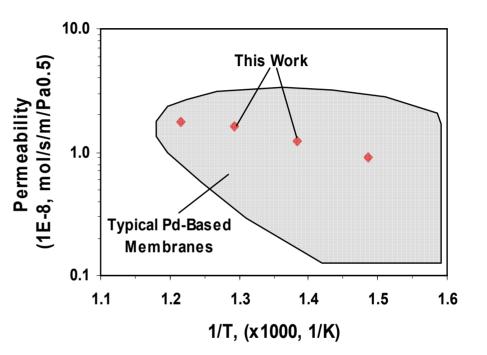
Conditions: Feed: 60% CO, $25\% H_2$, $10\% CO_2$, $5\% N_2$, 3000 ppm H_2S $H_2O/C: 4 \text{ (molar)}$ Temperature: 400 °CPressure: 350-400 psigSpace Velocity: 3,000 1/h(dry-based)

The catalyst is stable in the presence of high concentrations of sulfur and HCI.


Membrane Preparation

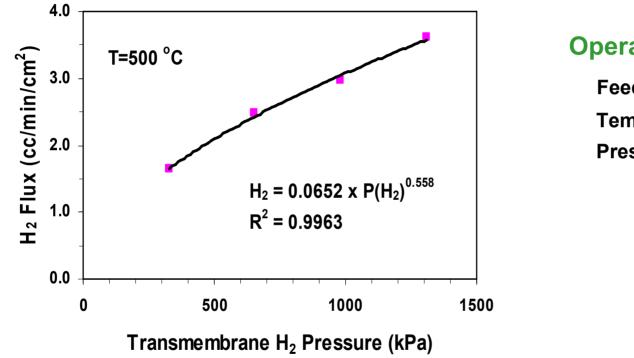
Membrane Development Approach

- Dense membranes with surface modifications
- Surface modification to increase H₂ flux and stability
- Low material cost
 (<20% Pd-based membranes)


Membrane Characterization

- Microstructure
- Composition
- Crystalline Phases
- Defects

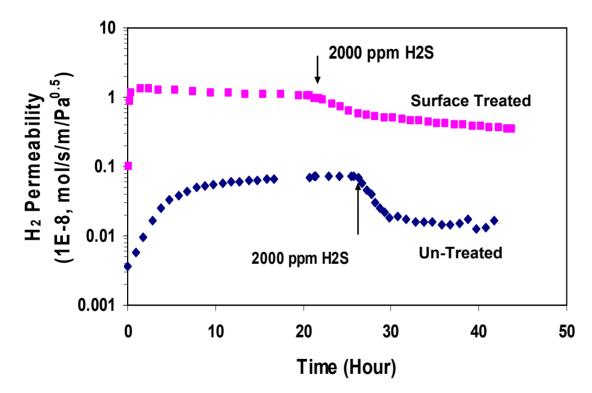
Membrane Evaluation


- Determined a suitable membrane thickness
 - High H₂ flux
 - Good mechanical strength
- Optimized operating conditions
- Demonstrated
 - Membranes permeable to only H₂,
 i.e, high to infinite H₂ selectivity
 - H₂ permeability comparable to that of Pd-based membranes
- •Validated proposed approach to lowcost, high permeability membranes

Operating Conditions:

Feed: 95% H₂-5% He Temperature: 350-550 °C Pressure: 200 psig

Membrane Evaluation



Operating Conditions:

Feed: 95% H₂-5% He Temperature: 500 °C Pressure: 50-200 psig

- High H₂ fluxes were obtained.
- H_2 flux is approximately proportional to square root of H_2 partial pressure.

Membrane Tolerance to Sulfur

Operating Conditions:

Feed: 95% H₂-5% He Temperature: 450 °C Pressure: 200 psig

- Surface treatment increases membrane H₂ permeability and stability.
- The membranes are tolerant to high concentrations of sulfur.
- Tolerance to CI and H_2O is being investigated.

Future Work

Membrane

- Optimization of membrane composition

• 50 L H₂/h Membrane Reactor

- Design
- Preparation of longer Membranes
- Construction
- Testing

• 500 L H₂/h Membrane Reactor

- Design
- Construction
- Testing
- Modeling
- Cost Analysis

Summary

- Successfully developed a low-cost, contaminant-tolerant, nanosized catalyst for WGS reaction of coal-derived syngas.
- Demonstrated that the catalyst
 - -is highly active. Equilibrium H_2 yield can be achieved at practical operating conditions.
 - -is very stable in the presence of high concentrations of sulfur and chlorides.
 - -can be operated in wide temperature and pressure ranges: 300-500 °C and 300-500 psig.
- Successfully developed a low-cost, sulfur-tolerant, H₂-selective membrane.
- Demonstrated that the membrane:
 - is permeable to only H_2 .
 - -has comparable H_2 permeability to Pd-based membranes.
 - -is tolerant to high concentrations of sulfur.
- Optimized membrane thickness.