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Overview

• Start: June 2, 2005
• End:  June 1, 2008
• 28 % complete

Produce hydrogen from coal  with 
minimum CO2 production.
Hydrogen storage/carrier media.

• Total project funding
– DOE - $6,000,000
– CFFS - $1,500,000

• Funding received in FY05 -
$2,000,000 

Budget

Timeline Barriers

CFFS:  U of Kentucky, West 
Virginia U, U of Pitts., U of 
Utah, Auburn U

Advisory Board: Eastman, 
ConocoPhillips, Chevron 
Texaco, US Air Force, US 
Army

Partners
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Objectives
Develop innovative technology for 
producing hydrogen from coal-derived 
syngas or from hydrogen rich liquids and 
gases produced from coal-derived 
syngas.
Develop better methods of producing 
hydrogen-rich liquids and gases from 
coal.



C F F S

Approach
The Consortium for Fossil Fuel Science 

includes professors and students from five 
universities – Kentucky, West Virginia, 
Pitt, Auburn, and Utah. They are 
conducting a collaborative research 
program focused on the production of 
hydrogen and clean hydrogen-rich liquids 
and gases from coal using C1 chemistry.
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Accomplishments
Because this is a new contract, most of the research 

projects being addressed have been underway for less 
than a year.  One exception is a project at the University 
of Kentucky dealing with the production of hydrogen by 
Non-Oxidative Catalytic Dehydrogenation, which 
began in our previous DOE contract and continued into 
the current program.  This project will be the primary 
focus of this presentation and its accomplishments will 
be discussed in detail.  Accomplishments of the other, 
newer, research projects in the CFFS hydrogen research 
program will be summarized more briefly.
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Accomplishments – Catalytic Dehydrogentation
Binary Fe-M (4.5%Fe-0.5%M/Al2O3, M=Ni, Mo, or Pd) 
catalysts have excellent activity and lifetimes for non-oxidative 
dehydrogenation of gaseous alkanes, yielding pure hydrogen 
in one step.  No CO or CO2 is produced.

Carbon is produced primarily in the form of nanotubes.  Multi-
walled nanotubes (MWNT) are dominant but stacked-cone 
nanotubes (SCNT) are easily produced by varying the 
temperature and feed gas.

A continuous process for catalytic dehydrogenation of 
methane using these catalysts was developed using a mixed-
mode, fluid-bed/fixed bed, reactor.
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Mössbauer and XAFS spectroscopy indicate that the active 
phase is an Fe-M-C austenitic alloy bound to the alumina by 
an Fe-aluminate, hercynite. 

Fe-M alloy catalysts on Mg-Al oxide have been tested.  
Although the hydrogen production is lower, the nanotubes are 
easily cleaned by dissolving the support.

Pt nanoparticles on SCNT are excellent catalysts for stripping 
hydrogen from high hydrogen content liquids (cyclohexane, 
tetralin, decalin, etc.) leaving rechargeable aromatic phases.

Accomplishments – Catalytic Dehydrogentation
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Accomplishments of newer CFFS projects

A process for co-production of hydrogen and methyl formate 
from methanol has been developed.  U. of Pittsburgh

Promising catalysts for the water-gas shift (WGS) reactions 
were prepared by gas phase deposition of dispersed Pd 
nanoparticles on ceria aerogels.  U. of Utah

Low temperature aqueous reforming of ethylene glycol and 
other polyols yields large percentages of hydrogen with very 
little CO. U. of Pittsburgh

Reforming of methanol in supercritical water yields ~98% H2
with CO and CO2 percentages <2 %.  Auburn U.
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Partial oxidation of propane was investigated using 
Pt/CeO2 catalysts.  Proper adjustment of operating 
parameters were shown to yield a hydrogen-rich 
syngas.  West Virginia U.

Projects focused on the production of hydrogen-rich 
liquid fuels via the Fischer-Tropsch (F-T) synthesis 
reaction are ongoing at all of the five CFFS universities 
and are discussed in a recent report and many 
publications that are available at our web site –
www.cffs.uky.edu . 

Accomplishments of newer CFFS projects

http://www.cffs.uky.edu/


C F F S

The remainder of this presentation presents a more detailed 
summary of CFFS research on catalytic dehydrogenation.  The 
reactions of interest for gases are given below.

Methane:  CH4 → C + 2H2 (25 wt% H2)

Ethane:     C2H6 → CH4 + C + H2
→ 2C + 3H2 (20 wt% H2)

Propane:  C3H8 → CH4 + 2C + 2H2
→ 3C + 4H2 (18.2 wt% H2)

Catalytic dehydrogenation
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Catalysts Employed
Binary Fe-based catalysts  (0.5%M-
4.5%Fe)/ γ-Al2O3 (M=Mo, Ni, or Pd)

Prepared by co-precipitation and 
incipient wetness methods.  

Pre-reduced in hydrogen at 700 ºC for 
2 hrs in situ in reactor.  
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Decomposition temperatures are lowered by 450-500 ˚C.  
Hydrogen production is maximized at ~700-800 ˚C
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SEM and HRTEM of carbon nanotubes (MWNT) 
produced by decomposing undiluted methane at 700 oC 
over 0.5%Mo-4.5%Fe/ γ-Al2O3 pre-reduced at 700 oC

500 nm 5 nm
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The catalysts exhibit reasonably good lifetimes, with 
deactivation rates of ~1-5% per hour in a plug-flow reactor.
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Stacked-cone nanotubes (SCNT) are produced from 
propane and ethane below 500 ºC and multi-walled 

nanotubes (MWNT) above 600 ºC. 

SCNT MWNT
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Fuel cell vehicles (FCV) require a high-
hydrogen content liquid fuel
as a hydrogen carrier

Examples: cyclohexane (7.1 wt.%)
methyl cyclohexane (6.5 wt.%)
decalin (7.2 wt. %)

Cyclohexane
1 mole

Benzene
1 mole/25%

Hydrogen
3 moles/75%

+ 3H2
Catalysts
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HRTEM of used catalysts 1%Pt/SCNT after 
dehydrogenation of cyclohexane at 315 °C.  Note that 

the size of the Pt nanoparticles is only ~2-3 nm.
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Hydrogen production from cyclohexane at 315 ºC by 
Pt/SCNT catalysts.  75 vol.% hydrogen represents 

conversion of cyclohexane to benzene and hydrogen.  
Similar results were obtained for methylcyclohexane.  
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Summary

• Catalytic dehydrogenation is an alternative one-step method 
of producing pure hydrogen from hydrocarbon gases and 
liquids that produces no CO or CO2.  All carbon is produced 
as a potentially valuable by-product, carbon nanotubes.

• Although production of carbon nanotubes is preferable to 
producing carbon dioxide, large scale uses for nanotubes 
could make the process much more appealing.

• Partial catalytic dehydrogenation of liquid hydrocarbons may 
be a viable method of producing hydrogen on-board in 
vehicles, particularly if high hydrogen content liquids can be 
synthesized that can be dehydrogenated at <~100 ˚C.
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Future Work
• Develop new supports for Fe-M dehydrogenation catalysts 

that are easily dissolved and have good activity and lifetimes.
• Develop synthesis processes for monodisperse metallic 

nanoparticles (~5 nm) for dehydrogenation applications, both 
as supported and as unsupported catalysts (late 2006).

• Develop a continuous dehydrogenation reactor that utilizes 
unsupported nanoparticle catalysts and includes a spooling 
process for nanotube collection (2007).

• Develop liquids for vehicular applications that can be 
catalytically dehydrogenated/hydrogenated at ~100 ˚C (2007).

• Explore large scale uses for nanotubes; one possibility is as 
environmental sorbents.
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