2006 Hydrogen Fuel Cells Technology Infrastructure Review Meeting

Low-Cost, High-Pressure Hydrogen Generator

Cecelia Cropley Giner Electrochemical Systems, LLC May 16, 2006

Project ID# PDP 2

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Project Start: Jan 2003
- Project End: Dec 2007
- Percent Complete: 60

Budget

- Total Project Budget: \$3.026M
 - □ DOE Share:\$1.499M
 - □ Cost Share:\$1.527M
- FY05 Funding
 - □ DOE: \$400K
- FY06 Funding
 - □ DOE: \$350K
- Cost Share Funding to Date: \$1.08M

Barriers

DOE Technical Barriers for Hydrogen Generation by Water Electrolysis

- Q. Cost- capital cost, O&M
- R. System Efficiency

Technical Targets

- \$600/kW for 10,000 scfd unit
- Stack efficiency = 76% (LHV)
- \$2.85/gge H₂ in 2010

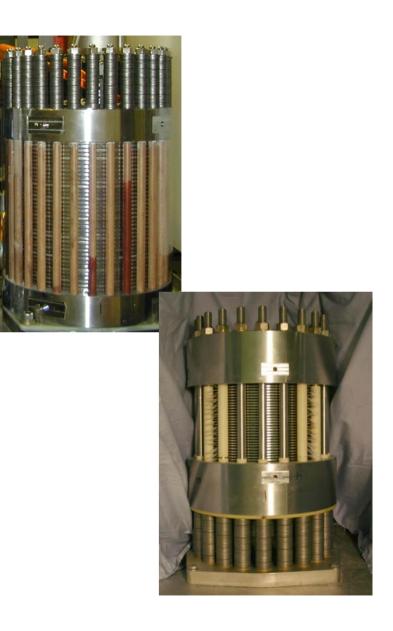
Partners

- General Motors
- Center for Technology
 Commercialization- Public
 Outreach and Education

Project Objectives

Overall Project

- Develop and demonstrate a low-cost, high-pressure PEM water electrolyzer system
 - Reduce capital costs to meet DOE targets
 - Increase electrolyzer stack efficiency
 - Increase electrolyzer hydrogen discharge pressure
 - reduce amount of mechanical compression required
 - Demonstrate a 3,300 scfd highpressure electrolyzer operating on a renewable energy source


Advantages of GES PEM Electrolyzer

PEM electrolyzers have higher efficiency than alkaline systems

- □ Electricity is the key cost component in electrolyzer systems
- □ Present GES performance is 1.75V at 1200 mA/cm²
 - Stack efficiency = 71% based on LHV
- □ With advanced membrane demonstrated 1.71V at 1200 mA/cm²
- □ Alkaline systems typically >1.85V at 300-400 mA/cm²
- GES PEM differential pressure technology produces H₂ at high pressure (up to 3000 psig to date) with O₂ production at atmospheric pressure
 - □ Reduces system cost and complexity
 - \Box Improves safety- eliminates handling of high-pressure O₂
- Cost is benefited by advances in PEM fuel cell technology

Approach

- Incrementally increase stack operating pressure through advanced seal and endplate design
 - □ 1000 psid in 2002; 2000 psid in 2004
 - Demonstrated sealing to 3000 psid in 2006
- Replace high-cost stack components with lower-cost materials and fabrication methods
- Increase operating current density to reduce cell active area (reduce stack cost) while retaining high efficiency
- Incrementally increase the system operating pressure
- System innovations to replace highcost, high maintenance components
- Emphasize safety in design and operation

Objectives- Past Year

- Develop Lower-Cost Stack Components
- Decrease Parts Count/Cell
 - □ Applies to all operating pressures
 - □ Anode Side Membrane Support Structure (ASMSS)
 - □ Cell frames
 - □ Cathode Side Membrane Support Structure (CSMSS)
 - □ Cell Separator
- Increase Operating Current Density
 - Continued development of an advanced high-efficiency, highstrength membrane
 - Provides efficiency comparable to Nafion 112, but has 10x the strength
 - Operating at higher current density reduces number of cells, thereby decreasing stack cost

Stack Cost Reduction

- Initial stack cost reduction focused on the cathode side membrane support structure (CSMSS)
 - Previous Design was a hand-fabricated stack of expensive screens and shims- expensive raw material and assembly
 - Developed a low-cost single-piece CSMSS
 - Demonstrated in the EP-2 stack demonstrated in 2004
- Presently evaluating methods to further reduce cost of this part
 - Evaluating alternatives to current supplier
 - Developing methods to minimize post-fabrication processing

Stack Cost Reduction Since EP-2

ASMSS

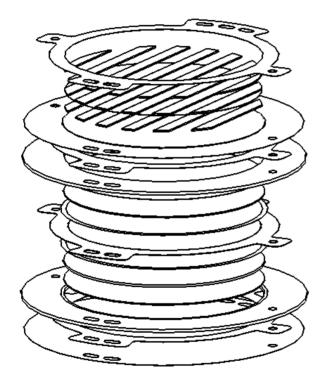
- Consists of 9 metal parts which are individually cut, plated, welded, cut again and assembled
- Previously reported design of an alternate that consists of 4 parts
 - Could be supplied by a vendor as a single complete part
 - Expected to reduce ASMSS cost by 50%; an additional 25% reduction could be realized in high-quantity production
- □ Evaluating feasibility of using a single-piece part
 - Working with vendors to develop cost-effective method for making part with acceptable tolerances
 - Currently evaluating properties of sample pieces

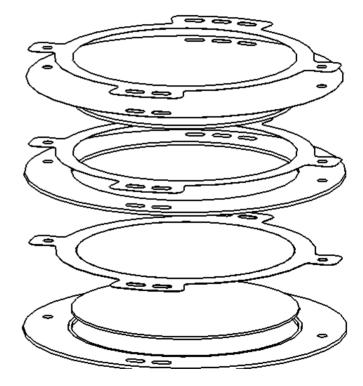
Thermoplastic Cell Frame

- Conduct fluids into/out of active area
- Aids in pressure containment- highly stressed component
- Presently these parts are molded and machined; machining accounts for 95% of part cost
- GES worked with a Tier 1 automotive component supplier to design new frames and manufacturing methods
 - Evaluated several designs that eliminate machining
 - Test coupons successfully hydrostatically tested to 3000 psig
 - Analysis indicates leaching of contaminant from processing method

□ Continuing to pursue non-contaminating methods

Successful development expected to reduce cell cost by 40%


Cell Separator


- Key component that must be compatible with high-pressure hydrogen on one side and oxygen at high potential on the other
- Previous technology was a very expensive part consisting of two different valve metals
- Evaluating several approaches
 - Treatments to reduce hydrogen embrittlement
 - Methods to bond low-cost materials

Progress in Part Count Reduction

2002

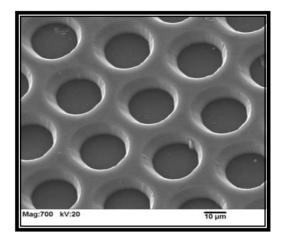
Present Goal (2006)

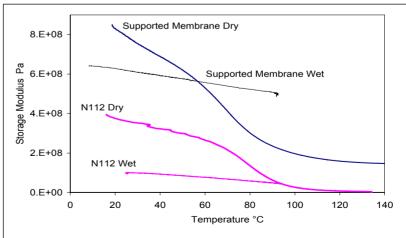
40 + Parts

16 Parts

Increasing Operating Current Density

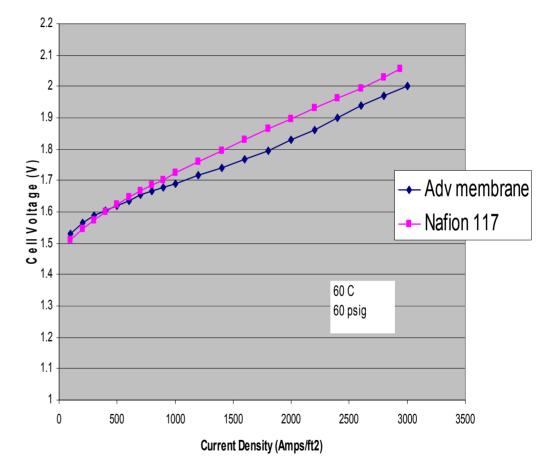
- High current density operation reduces stack active area, and therefore stack cost
 - □ Thin membranes have low resistance, allowing efficient operation at high current densities
 - Drawback is poor mechanical properties, limiting operation to moderate differential pressures
- GES has reduced the thickness of the Nafion membrane used from 10 mils to 7 mils, and has demonstrated performance and life of a 5 mil Nafion membrane in a short stack at 400 psid
 - □ However, thicker membranes are required at higher differential pressure
 - 5000 psid will require 10 mil standard membrane
- GES is developing an advanced supported membrane structure
 - □ Excellent mechanical properties- suitable for high differential pressure
 - □ High proton conductivity- equivalent to 2 mil Nafion membrane
 - □ Hydrogen and oxygen permeability equivalent to N112

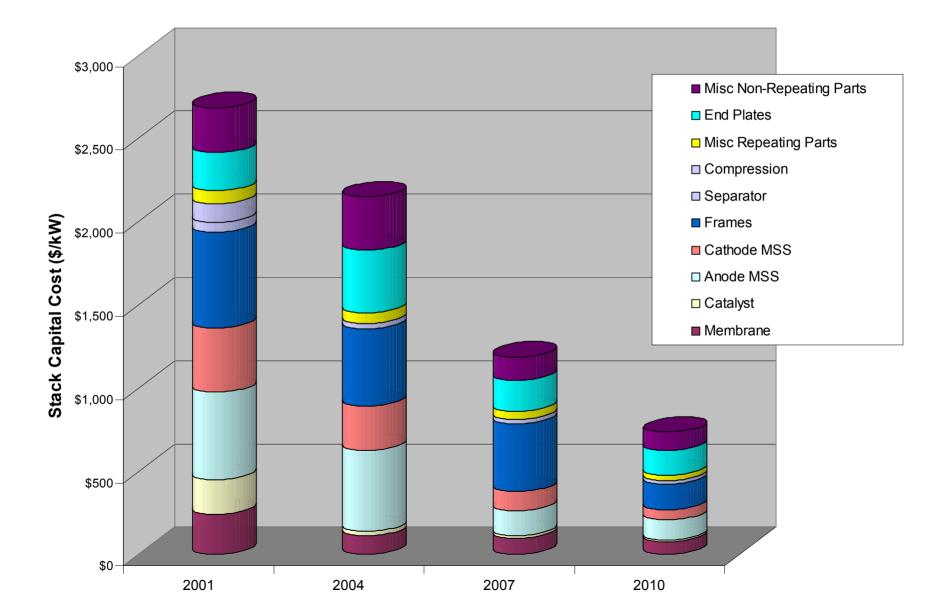

Supported Membrane


Superior Mechanical Properties

- No x-y dimensional changes upon wetting/drying or freeze-thaw cycling
- Much Stronger Resistance to tear propagation
- Superior to PTFE based supports
 10x stronger base properties

Ease of MEA/Stack configurations


- Direct catalyst inking onto membranes
- Possible to bond support structures into bipolar frame to eliminate sealing issues
- Customization of MEA
 - Provide more support at edge regions and/or at ports



Demonstration of Advanced Membrane in 160-cm² cell

- Developed method for fabricating full-scale MEA
- Demonstrated sealing of membrane in cell
- Demonstrated efficient cell operation
 - Performance superior to Nafion 117 membrane

Progress in Stack Cost Reduction

EP-2 System

- System pressure (hydrogen production) was upgraded from 2000 psig to 3000 psig
- Design capacity
 - 140 scfd hydrogen
 - □ 25 kW system power

Future Plans

Remainder of FY 2006

Continue focus on stack cost reduction

- Develop single-piece ASMSS
- Reduce fabrication cost of CSMSS
- Evaluate low-cost cell frame fabrication methods
- Develop lower-cost, long-life cell separator
- Demonstrate advanced membrane
- Demonstrate low-cost materials and fabrication methods in a 10-cell stack

Future Plans

FY 2007

 Fabricate 3300 scfd stack and system
 Conduct field-test of system, possibly at NREL

Summary

- GES PEM Electrolyzer has potential to meet DOE cost and performance targets
- GES has made significant progress in stack cost reduction
- Further development of a high-strength, high efficiency membrane is recommended
 - □ Demonstrate reproducibility and durability
 - □ Decrease fabrication cost

Response to Reviewers' Comments

- Relying too much on low-cost electricity to achieve the cost targets
 - □ Cost of electricity is the major cost component
 - Even at very high efficiency, low-cost electricity is required to achieve the target \$2.85/gge H₂
 - DOE target is based on \$0.04/kWh
 - Advanced membrane will significantly improve electrolyzer efficiency

Little collaboration

□ Program is primarily an engineering program

 GES is collaborating with a number of component vendors and materials suppliers to develop advanced materials and manufacturing methods

Publications and Patents

 "Electrolyzer System Including Combination Gas Storage Vessel and Gas/Water Separator" (T. Norman and E. Schmitt); Patent Application Filed November 2005.

Critical Assumptions and Issues

- Hydrogen storage pressure for refueling
 - Present program is aimed at H₂ production at 5000 psig
 - □ DOE target has been increased to 6700 psig
 - Auto manufacturers are evaluating storage at >10,000 psig
 - GES economic studies indicate lowest cost for PEM electrolyzer operating at 1200-1500 psig, with singlestage compressor to reach storage pressure

Cost of electricity is key variable in electrolyzer economic analysis

□ GES uses \$0.035/kWh in our model