EVermont Renewable Hydrogen Fueling System

Harold Garabedian (EVermont) Nick Borland (Northern Power Systems) Ken Dreier (Proton Energy Systems)

May 16, 2006

This presentation does not contain any proprietary or confidential information

PDP31

Overview

Timeline

- Start Date April 2004
- End Date September 2006
- 85% Complete

Barriers

- G. Cost
- H. System Efficiency
- I. Grid Electricity Emissions
- J. Renewable Integration

Budget

- Total Project Funding
 - DOE \$937K
 - Contractors \$937
- \$757K Funding in FY05
- \$180K Funding in FY06

- Partners (Subcontractors)
 - Northern Power Systems
 - Proton Energy Systems

Suppliers/Site Owner

Air Products, Quantum Burlington (VT) Dept. of Public Works

Objectives

Overall	Develop and Test Advanced PEM Electrolysis Fueling Station Technology
2005	 Build and Test Advanced PEM Cell Stack Build and Test Advanced Power Supply Design Extreme Cold Weather System Capability Devise Station Site Plan
2006	 Complete Integrated System Tests In-house Complete Site Preparation and Incorporate Renewable Wind Generated Power Procure a Hydrogen Fueled Vehicle Commission and Test Advanced PEM Fueling Station

Plan and Approach

R&D and In-house Testing	 Build and Test Advanced PEM Electrolysis Cell Stack Hardware Build and Test Advanced Power Electronics Hardware Assemble and Test Full Scale 12 kg/day PEM Electrolysis System In-house test of entire Fueling System
System Design and Engineering	 Design for High System Efficiency, Low Cost, Renewable Energy, and Extreme Cold Temperatures in Vermont Final Design and Fueling Station Site Layout
Site Preparation, Installation, and Commissioning	 Site Plan, NEPA Documentation, Permitting Training for Safety, Operation, and Maintenance
Procure H ₂ Vehicle	 Devise Vehicle Requirements, Solicit Bids, Downselect, Procure
Testing, Monitoring, and Analysis	 Measure or calculate H₂ output, power consumption, efficiency, wind turbine output, seasonal/temperature related performance Vehicle fill times, performance (km/kg), and maintenance requirements

R&D and In-house Testing	 Built and Tested Advanced PEM Electrolysis Cell Stack Hardware Built and Tested Advanced Power Electronics Hardware Assembled and Initiated Testing of Full Scale 12 kg/day PEM Electrolysis System and entire Fueling System
System Design and Engineering	 Successfully Tested In-house Extreme Cold Temperature Solution Final Design and Fueling Station Site Layout Completed
Site Preparation, Installation, and Commissioning	 Permitting Completed Site Construction Initiated; To Be Completed May 2006
Procure H ₂ Vehicle	 Quantum Selected to Provide H₂ ICE Prius – Delivery in May 2006
Testing, Monitoring, and Analysis	 To be initiated in June 2006

R&D and In-house Testing of Advanced <u>PEM Electrolysis Cell Stack</u> Barriers G (Cost) and H (System Efficiency) addressed

Explicitly Addresses DOE Efficiency and Cost Targets for Electrolysis Cell Stacks

- 8-10% Cell Stack Energy Efficiency Improvements Anticipated
- 20-30% Cell Stack Cost Reduction Anticipated
- Potentially decrease H₂ Fueling Costs by up to \$0.50/kg from present costs

EVermont

R&D and In-house Testing of Advanced Power Supply

Advanced Power Supply Built and Installed in Electrolyzer System Testing to be Completed in 2006

			1500 kg/day refueling station		Central Renewable ^b	
Characteristics				2005	2010	2015 Targe
Undraubrichte		Units	2000 010100	Target	Target	2010 larget
Davies Conversion	Cost	\$/gge H ₂	0.95	0.80	0.39	0.24
Cell Stack, Balance of Plant*	Total Cell Efficiency	96	66	68	76	77
	Cost	¢ggo H ₂	0.00	0.77	0.19	0.08
Compression, Storage, Dispensing*	Efficiency	96	94	94	99	99.5
Electricity*	Cost	\$/gge H ₂	2.57	2.47	1.89	1.32
O&M	Cost	\$/gge H ₂	0.80	0.71	0.38	0.11
-	Cost	\$/gge H ₂	5.15	4.75	2.85	2.759
lotar	Efficiency	96	62	64	75	76

- Explicitly Addresses DOE Efficiency and Cost Targets for Power Conversion
- 5-10% Power Supply Efficiency Improvements Anticipated
- 25-50% Power Supply Cost Reduction Anticipated

Potentially decrease H₂ Fueling Costs by up to \$0.50/kg from present costs 7

In-house Test Installation Completed; In-house Testing 90% Completed

Site Selected and Fueling Station Layout for Vermont Completed

Permitting Complete, Site Construction Initiated

Fueling Station Site April 2006 at Burlington (VT) Department of Public Works

- Completed Site Plan; Initiated Site Work; Installation Scheduled May 2006
- Completed analysis of low cost system performance using electricity rates from grid-coupled wind turbine for time-of-day pricing
- Devised high efficiency extreme cold temperature operating modes for H₂ electrolysis
- Began estimation of renewable energy credits for the Wind-electrolysis H₂
 Fueling System

EVermont

Future Work

<u>FY 2006</u>

- Complete In-house Testing (May 2006)
- Complete Site Work in Burlington, VT (May 2006)
- Receive H₂ Vehicle (May 2006)
- Install and Commission System (June 2006)
- Testing, Monitoring, and Analysis (Jun-Sep 2006)

Summary

An advanced PEM Electrolysis Cell Stack and an advanced AC-DC Power Converter were successfully built and will be field tested for the first time in a full scale fueling system

An outdoor heated purge operating configuration for efficient freeze-protection in extreme cold weather was tested successfully

Site Plan Completed, Site Permits Obtained, Site Construction Initiated

Responses to Previous Year Reviewers' Comments

"This Project should focus more on the improvements of the electrolyzers and not demonstrating the technology until ready"

- Focus has been placed on the two key electrolysis subsystems: Cell Stack and Power Supply
- Testing in a controlled environment has been completed
- Field testing will provide vital feedback for actual operating efficiency, durability, and actual progress towards DOE goals.

"Should further develop a strong public relations and education component"

- Public Meetings were held in Burlington, VT to discuss this project
- Objectives and Lessons Learned for this Project were presented at the PowerGen Renewable Energy and Fuels Conference in April 2006
- A Grand Opening Event in Burlington, VT will be planned in Summer 2006
- Performance Data will be presented in public forum, as appropriate

Publications and Presentations

 A. Khan, N. Borland, K. Dreier, H. Garabedian, R. Boehm, et al., "REAL WORLD EXPERIENCE WITH RENEWABLE HYDROGEN FUELING STATIONS" presented at the 2006 Power-Gen Renewable Energy and Fuels Conference, Las Vegas, NV April 11, 2006

Critical Assumptions and Issues

 No Established Funding for Long Term System or Vehicle Maintenance or for Data Analysis/Reporting after GFY06