A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biogas

Greg Tao and Anil Virkar

Materials & Systems Research Inc., Salt Lake City, UT

2006 DOE Hydrogen Program Annual Review May 16, 2006

Project ID#: PDP 33

Overview

Timeline

- Project started: 09/30/2004
- Project ends: 11/30/2006
- Percent completed: 60%

Budget

- Total budget funding
 - DOE \$1,200k
 - Contractor \$ 300k
- Funding received in FY05
 \$ 567k
- Funding for FY06
 - \$ 605k

Barriers

Hydrogen generation by water electrolysis

- G Capital cost
 - Low-cost, durable high-temperature materials development
 - Lower operating temperature
- H System efficiency
- J Renewable integration
- K Electricity costs

Partners

- Materials & Systems Research, Inc. (MSRI)
- University of Missouri-Rolla (UMR)
- Aker Industries, Inc. (AI)

Objective

Overall Objective	• To develop a composite/hybrid planar 1kW SOFC-SOFEC stack generating both hydrogen and electricity either from distributed natural gas or biogas fuel. The project focuses on materials research, stack design & fabrication, and verification.
2005	Anode-supported cell development
	 Materials selection
	 Cell design
	- Cell fabrication
	- Testing/verification
2006	 SOFC-SOFEC stack development
	 Stack design
	— Fabrication
	 Seals development
	 Proof-of-concept stack test/verification
	 Economic analysis

Approach

<u>Materials</u> <u>Development</u>

- A. Ca materials selection
- B. An optimization
- C. Electrolyte optimization
- D. Catalyst studies
- E. Cell scale up
- F. Fabrication Q.A.

80% complete

MSRI, UMR

Cell / Stack Design

- A. Cell manifolds design
- B. Interconnect design
- C. Top/end plates design
- D. Thermal/flow manag.
- E. Seals development
- F. Economic analysis

60% complete

MSRI, AI

Experimental Verification

- A. Single cell
- B. Seal test
- C. Short stack
- D. Model verification (T,P)
- E. 1kW stack demo

50% complete

Success

Background

A Solid Oxide Fuel-Fed Electrolysis Cell (SOFEC) directly applies the energy of a chemical fuel to replace the external electrical energy required to produce hydrogen from water/steam; decreasing the cost of energy relative to a traditional electrolysis process.

Concept of Hybrid SOFC-SOFEC Integral System

- Pure H₂ & e⁻ generated from fuel, steam, and air
- SOFECs produce pure hydrogen
- SOFCs generate electricity; increase H₂ production rate
- Thermal integration improves system efficiency

Anode-supports Optimization

- Objective
 - Increase anode porosity and decrease thickness to minimize concentration polarization
 - Develop anodes with improved mechanical and thermo-mechanical properties
 - Fabricate anode-supported cell with defect-free thin electrolyte layer
- Approach
 - Vary composition and microstructure of anode supports
 - Vary pore-former to adjust porosity
 - Improve quality control

- Cell w/ 2cm² active area
- ➤ Tested @ 650 800 °C
- ➢ Air flow rate @ 550 ml/min
- \succ H₂ flow rate @ 140 ml/min

Improved Stack Performance in SOFC Mode

Power density (W/cm²

Cathode Materials Selection

- Cathode materials are electrocatalytically and chemically stable in both reducing and oxidizing atmospheres
- Candidates: composite cathode, perovskite cathode (w or w/o infiltrated electro-active material)
- Cathode functional layer optimization

Electrical Conductivity of LSCrM

Fabrication of Nano-size Cathode Powder

- To fabricate an <u>efficient electrode</u> and it was found from previous research that this could not be achieved if large particle size powder (about 10 mm) was used.
- To make efficient electrode, <u>low sintering temperatures</u> should be used to produce the smallest grain size possible.
- Therefore, the development of technology to fabricate <u>non-agglomerated</u>, <u>nano-sized powder</u> is required.
- Water based chemical preparation methods were used to prepare LSCrM system.

- LSCrM using ethylene glycol
- Agglomerated but well dispersed
- Large particle size $\sim 20 \text{ mm}$

- LSCrM using glycine nitrate method
- After sonication and separation
- Agglomerated particle were sedimented
- Particles are well dispersed

Selected Cathode Evaluation in SOFC/SOEC Modes

Cathode Performance in SOFC/SOEC/SOFEC Modes

Long-Term Test Under Constant Load (0.7A/cm²)

Proof-of-concept Hybrid Stack Testing

Hybrid stack testing station

- Station capable of operating in three modes: SOFC/SOEC/SOFEC
- Capable of 40+ cell stack
- Capable of hybrid stack
- Automation testing
- Self protection in case of power outage
- Stack IR evaluation
- Gas chromatograph analysis
- Hydrogen production measurement

Stack Performance in SOFC/SOEC/SOFEC Modes

SOFC-SOFEC Hybrid Study

Materials and Systems Research, Inc.

Economic Analysis

- Increased cell ASR increases required cell area and stack cost.
- Ideal SOFC:SOFEC ratio dependent on cell performance.
- Combined feedstock and capital cost less then electricity cost for water electrolysis even with current stack performance levels.

Future Work

- Remainder of 2006
 - Further implementation of quality assurance in cell/stack fabrication
 - Short stack testing proof-of-concept
 - Stack optimization
 - Demonstrate hydrogen generation from a hybrid stack worth of 1kW of electricity
 - Implementation of economic analysis

	2006								
	2nd quarter		3rd quarter			4th quarter			
Task Name	4	5	6	7	8	9	10	11	12
Short stack testing: proof-of-concept					•				
Stack optimization						l i	1 1 1 1		
1kW hybrid stack experimental validation									
Implement economic analysis									
Final report				1 1 1			, , , ,		

Project Summary

Relevance:	Investigate alternative approaches to produce hydrogen at reduced cost of electricity
Approach:	Develop a SOFC-SOFEC hybrid system to generate hydrogen and electricity directly from fuels
Technologies Accomplishments and Progresses:	Developed/optimized anode-support solid oxide cells; developed/characterized electro-catalytically and chemically stable cathode materials; characterized the selected materials in SOFC/SOEC/SOFEC modes; designed/fabricated hybrid stack
Proposed Future Research:	Proof-of-concept 1kW hybrid stack; implement experimental investigation and economic analysis; optimize the hybrid system for various applications, including hydrogen refueling station.

Responses to Previous Year Reviewers' Comments

- "The project would benefit from defining a target-driven path for achieving cost competitive hydrogen/electricity"
 - Preliminary economic modeling has yielded a method for relating cell performance to predicted hydrogen production cost.
 - A more detailed analysis is in process to include all relevant cost factors.

Responses to Previous Year Reviewers' Comments

- "Integration of the combined functions, power generation and hydrogen production, in a single SO stack has, in similar projects, resulted in poor performance of both functions."
 - SOFEC performance is not compromised by the selected materials set.
 - Performance in SOFC mode is lower than that of non-reversible SOFC materials, but effect on production cost is minimal.
 - Future economic analysis will evaluate the costs and benefits of reversible SOFC cells in a co-production scenario.

- "A process analysis and well-to-electricity/hydrogen analysis is definitely needed. The thermal efficiency of the process needs to be determined."
 - A process analysis was added in the task.
 - Detailed system modeling is underway.
 - Overall production efficiency shall be computed in accordance with the DOE H2A guidelines for forecourt scale hydrogen production.

Publications and Presentations

- A. V. Virkar and G. Tao, Chemically assisted electrolysis using reversible solid oxide fuel cells, 209th ECS meeting, May 7-12, 2006, Denver, CO
- Y. Sin, V. Petrovsky, and H. Anderson, Redox stable electrodes for hydrogen producing solid oxide electrolyzer, 209th ECS meeting, May 7-12, 2006, Denver, CO

