RUSS COLLEGE of Engineering Technology

Adapting Planar Solid Oxide Fuel Cells for **Distributed Power Generation** Jason Trembly, Andres Marguez, Dave Bayless **Ohio Coal Research Center**

Abstract

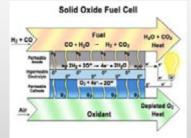
Solid Oxide Fuel Cells (SOFCs) are an attractive energy conversion technology due to their efficiency and flexibility to handle contaminants, such as CO and CO₂ present in fuels such as syngas derived from coal. However, coal syngas also contains H₂S and its presence is one of the major obstacles to implementing a coal syngas SOFC. Research completed at Ohio University has shown that the Planar SOFC (PSOFC) may be used to produce electrical energy using gasified Ohio coal that includes the contaminant H₂S. [1] In this work, two sets of tests for electrolyte supported PSOFCs with sulfur tolerant anodes were completed: completed

a) Two(2)-cells stack tests with an anode made of nickel - yttria stabilized zirconia (Ni-YSZ), and gadolinium-doped cerium oxide (GDC); the runs were carried out for over 1000 hours, with coal syngas containing H_2 , CO, N_2 , H_2O and H_2S ; the long-term performance of the cells was assessed by operating under a load of 15 Amps at 850°C and measuring the fuel cell's potential (power) and area specific resistance (ASR). The results show that a power degradation of 20% and an ASR $2.4~\Omega\,{\rm cm^2}$ after 1000 hours of operation with syngas in the presence of H_2S was achieved; while a power degradation of 14% and a final ASR of 3.0 $\Omega\,{\rm cm^2}$ after 1000 hours of operation was achieved, for a case with only H₂ and H₂S

b) Button-cell size (1" diameter; 2.0-2.7 cm²) tests with an anode containing Ni-YSZ and gadolina doped ceria (GDC) and strontium-doped lanthanum vanadate (LSV); the preliminary runs were carried out for over 6 hours at 800°C operated at 0.7V, with a similar syngas stream containing H_S. The preliminary results showed the anode with an additional LSV top layer performs better (ASR of 1.1 Ω cm² and peak power of 0.18 W/cm² at 0.4 A/cm²) than a traditional anode of Ni-YSZ-GDC (ASR of 2.0 Ω ·cm² and peak power of 0.1 W/cm² at 0.22 A/cm²).

Goals

- · Develop more efficient and environmentally friendly methods of producing electricity using coal
- Develop a distributed power generation source utilizing planar solid oxide fuel cell (PSOFC) technology.


Objectives

- Determine the carbon deposition resistance of PSOFC anodes.
- Determine the sulfur tolerance of PSOFC anodes

Introduction **PSOFC Advantages**

- H₂ and CO may be used as fuel.
- Operating efficiency of 52% (LHV) for production of power alone, and 80% (LHV) with heat and power [1].
 - · Coal fired power generation has an average efficiency of 32-34% (LHV) [2].
- High operating temperature (800°C to 1000°C)
- Low production of environmental pollutants
 - Little to no production of NO_x
 - Sulfur pollutant easily captured (200 to 300 ppm S emitted)
 - · Particulate may be cleaned by laminar ESP.
- Produces high guality steam.

PSOFC Operation[3]

PSOFC Thermodynamics

- Theoretical open cell voltage (TOCV)
 - · Represents the maximum energy available from a fuel cell

- TOCV (H₂,850°C) = 1.04 V
- TOCV (CO,850°C) = 1.08 V

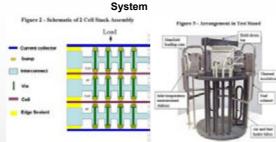
PSOFC Anode Kinetics

 Oxidation of H₂ & CO take place at the Triple Phase Boundary (TPB). Area where all reactants are present (O²⁻, H₂/CO, and e⁻).

Expansion of TPB is advantageous to anode kinetics

- Ni/YSZ anodes have a small TPB length
- Anodes containing CeO₂ have a larger TPB area
- Anodes containing LSV can withstand the presence of H₂S. [2]
 - LSV has the ability to preferentially oxidize H₂S (low activity for H₂ and CO).

No degradation over 48 hrs operation Anode TPB Examples [4]

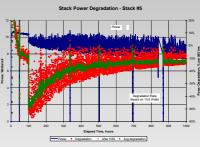


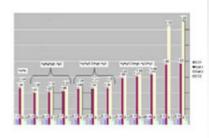
Anode Containing only YSZ

Methodology

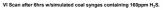
- Stack tests:
- Galvanostatic operation (0.21±0.01Amps/cm²) at 850°C utilizing simulated O2 blown Pittsburgh No.8 coal syn gas.
- PSOFC Area Specific Resistance (ASR) measured by completing V-I scans; ASR histories plotted and studied.
- · Voltage (power) performance over time monitored and studied
- Material analyses on the anodes (before and post tests): scanning electron microscopy (SEM), x-ray diffraction (XRD), and X-Ray Photoelectron Spectroscopy (XPS); to determine if any structural or composition changes had taken place.
- Button-cell tests (preliminary):
- Potentiostatic operation (0.7V) at 800°C utilizing simulated O₂ blown entrained flow coal syn gas.
- Area Specific Resistance (ASR) measured by completing V-I scans.

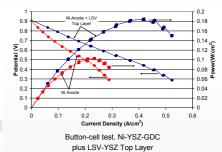
2-cell stack schematic & stand and Gas Delivery




Experimental Coal Syn Gas Composition

O₂ Blown Pittsburgh No. 8


2		Sburgh No	• • • •	Composition		
	Species	Mole %				
	CO	37.73	s	pecies	Mole %	
	CO ₂	15.38				
	H ₂	24.90		CO	33.0±1.0	
	H ₂ O	16.21		H ₂	22.0±1.0	
	CH_4	4.53			07.0.4.0	
	H ₂ S	0.95		N ₂	27.0±1.0	
	COS	0.02		H ₂ O	18.0±3.0	
	NH ₃	0.27		H ₂ S	240±20 ppm	
	HCN	0.02		1120	240120 ppm	



Stack test. Ni-GDC-YSZ (Anode). H2 and H2S (Fuel).

Stack test. Ni-GDC-YSZ (Anode). $H_2 \mbox{ and } H_2S$ (Fuel).

Conclusions

- ASR Degradation of 2.4 $\Omega{\cdot}cm^2$ and 20% degradation per 1000 hrs with coal syn gas in the presence of H_2S contaminant.
- ASR Degradation of 3.0 Ω·cm² and 14.0% degradation per 1000 hrs with H₂ and H₂S.
- Anodes containing CeO₂ exhibits better sulfur tolerance than any other Ni-YSZ anode composition published in literature.
- Anodes containing LSV on top of Ni-YSZ-GDC show better capability for sulfur tolerance than the Ni-YSZ-GDC anodes

Acknowledgements

- U.S. Department of Energy (Project DE-FG36-03GO130590)
- Ohio Coal Research Center
 - Shyler Switzer/Pat Curran/Micah
 - McCreery/Undergraduate Staff
- SOFCo-EFS

References

- 1. J. P. Trembly. A. I. Marquez, T. R. Ohrn, D. J. Bayless, "Effect of coal syngas and H₂S on the performance of solid oxide fuel cells: Single-cell tests", J. Power Sources, doi:10.1016/j.powsour.2005.09.055.
- Z. Cheng, S. Zha, L. Aguilar, D. Wang, J. Winnick, M. Liu, "A Solid Oxide Fuel Cell Running on H₂S/CH₄ Fuel Mixtures", Electrochemical Solid-State Letters, 9(1), A31 A33 (2006).

M. Mogensen, <u>Catalysis by ceria and related materials</u>, 2002, pp. 453-482.

Ohio Coal Research Center

on

Species	Mole %		
со	33.0±1.0		

Typical Simulated

.0±1.0 0+1.0 0±3.0 Results

Technical Barriers and Targets

- DOE Technical Barriers for Distributed Generation
 - Improved CO tolerance
 - Develop CHP fuel cell systems
 - Verify integrated stationary fuel cell systems
 - Mitigate technical barriers to stationary fuel cells
- DOE Technical Targets for 2010
 - 40,000 hours durability
 - \$1000/kWe

Project Safety

Hydrogen, Carbon Monoxide and H₂S Concerns

- FMEA Analysis
- Chemical hygiene training
- H₂S training
- Gas containment and scrubber system
- Operational SOP's
- PSD's gas monitors, SKAT packs, room monitors
- Verification gases to test monitors/detectors
- Notification and review with local authorities for the types and quantities of gases used

Budget

DE-FG36-03GO13059 Ohio University

Project Spending and Estimate of Future Spending

			Estimated Federal Share of	Actual Federal Share of	Estimated Recipient Share of	Actual Recipient Share of	
Quarter	From	То	Outlays	Outlays	Outlays	Outlays	Cumulative
1Q05	1/1/2005	3/31/2005		\$200,766		\$121,618	\$1,716,955
2Q05	4/1/2005	6/30/2005	\$201,313	\$662,887*	\$38,434	\$89,457	\$2,469,299
3Q05	7/1/2005	9/30/2005	\$402,626	\$196,420	\$76,867	\$115,456	\$2,781,175
4Q05	10/1/2005	12/31/2005	\$201,313	\$85,813	\$38,434	\$23,345	\$2,89,333
1Q06	1/1/2006	3/31/2006	\$201,313		\$38,434		
2Q06	4/1/2006	6/30/2006	\$201,313		\$38,434		
3Q06	7/1/2006	9/30/2006	\$402,626		\$76,867		
4Q06	10/1/2006	12/31/2006	\$201,313		\$38,434		
1Q07	1/1/2007	3/31/2007	\$201,313		\$38,434		
2Q07	4/1/2007	6/30/2007	\$201,313		\$38,434		
3Q07	7/1/2007	9/30/2007	\$402,626		\$76,867		
Totals \$2,890,33	33			\$3,853,487	\$2,181,539	\$858,555	\$738,794

* Includes contractor outlays not previously recorded

Project Timeline

Start date: Aug 2003; End Date: Aug 2007

- 1. Modeling syngas/SOFC interface 2. Fabricate/install syngas system 3. Fabricate/install cell test stands 4. SOFC training for interns 5. SOFC material analysis baseline 6. Synthetic syngas testing 6.1 Baseline syngas - 6.2 Effect of Hg - 6.3 Effect of sulfur – 6.4 Effect of particulate – 6.5 Effect of energy content - 6.6 Effect of O₂ in oxidizer 7. Electrostatic separation testing 8. H₂:CO separation or shift
- 9. Integration of fuel cells/gasifier

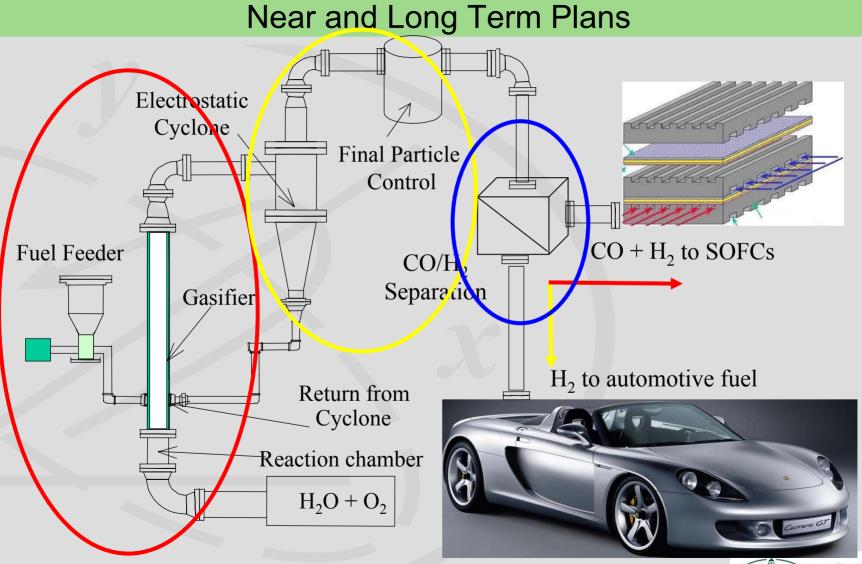
Aug 03-Dec 04 Sep 03-May 04 Sep 03-May 04 Apr 04-Jun 04 May 04-Aug 04 May 04-Dec 05

Aug 04-Sep 06 Aug 05-Aug 07 Jan 06-Aug 07

Interactions and Collaborations

Academic and Industrial Partnerships

- SOFCo-EFS (Fuel Cells)
- Case Western Reserve University
- University of Cincinnati
- State of Ohio's Air Quality Development Authority
- BAARD (Power Generation)
- Enercon (Gasification/Steam Reforming)


Future Work

Near and Long Term Plans

- Quantify impacts of synthesis gas composition on performance of a commercial planar solid oxide fuel cell system (cell and stack)
 - H₂S content
 - CO/H₂ ratio and energy content of gas
 - Particulate
 - Metal content
- Demonstrate long term operation of pSOFCs using actual sold fuel-derived synthesis gas
- Integrate CHP into distributed H₂ production

Future Work

