

Investigation of Bio-ethanol Steam Reforming over cobalt based catalysts

Umit S. Ozkan (P.I.) Hua Song, Lingzhi Zhang

Heterogeneous Catalysis Research Group

The Ohio State University

May 16, 2006

WCI Wright Center of Innovation Fuel Cell and Catalysis Research Laboratory

Project ID#: DE-FC36-05GO15033

PDP-7

This presentation does not contain any proprietary or confidential information

Overview

Timeline

Start Date - May 1, 2005
 End Date - April 31,2009
 20% Complete

Budget

Total project funding >\$1,145,625 (DOE) >\$299,715 (OSU cost share) Funding received in FY05 ≻\$100,000(DOE) >\$10,458 (OSU Cost share) \succ Funding received in FY06 (to date) ▶\$120,000 (DOE) >\$149,314 (OSU cost share) Additional funding needed for FY06 >\$194,619 (DOE) >\$58,909 (OSU)

Barriers

- ✤ A. Fuel Processor Capital Costs
- C. Operation and Maintenance
- D. Feedstock Issues

Partners

NexTech Materials, Ltd. Catalyst manufacturing scale-up

RTI - economic analysis and feasibility considerations

Objectives

- To acquire a fundamental understanding of the reaction networks and active sites in bio-ethanol steam reforming over Co-based catalysts that would lead to
 - Development of a precious metal-free catalytic system which would enable
 - Low operation temperature (350-550 ° C)
 - High selectivity and yield of hydrogen
 - High EtOH conversion
 - Minimal byproducts such as acetaldehyde, methane, ethylene, and acetone
 - Understanding of the catalyst deactivation and regeneration
 - Low cost for commercialization.

Approach

Supported Co-catalysts & Preparation

- ≻IWI. SG Precursor Precursor solution > Promoter >Support Cobalt loading Calcination > Temperature Reduction ➤Temperature ►Time Reaction >GHSV EtOH:Water ratio >Temperature >Oxygen addition Deactivation
- Deactivation/Regeneration

Catalysts Synthesis:

Role of the supports, precursors and synthesis techniques

	Catalyst	Precursor	Support/Preparation	
	10%Co/ZrO ₂	$Co(NO_3)_2 \bullet 6H_2O$	ZrO ₂ (Commercial)	
	1%Ru -10%Co/ZrO ₂	$Co(NO_3)_2 \bullet 6H_2O$ RuCl ₃	ZrO ₂ (Commercial)	
	1%Re -10%Co/ZrO ₂	$Co(NO_3)_2 \bullet 6H_2O$ ReCl ₃	ZrO ₂ (Commercial)	
	1%Rh -10%Co/ZrO ₂	$Co(NO_3)_2 \bullet 6H_2O$ RhCl ₃	ZrO ₂ (Commercial)	
	10%Co/ZrO ₂	CoCl ₂	ZrO ₂ (Commercial)	
	10% Co/ZnO(1)	$Co(NO_3)_2 \bullet 6H_2O$	Nano-powder ZnO	
	10% Co/ZnO(2)	$Co(NO_3)_2 \bullet 6H_2O$	100+ Mesh ZnO	
	10% Co/ZnO(3)	Co(NO ₃)₂● 6H ₂ O	decomposition of $Zn(NO_3)_2 \bullet 6H_2O$ at $500^{\circ}C$	
	10% Co/ZnO(4)	Co(NO ₃)₂● 6H ₂ O	decomposition of $3ZnO \bullet 2ZnCO_3 \bullet 3H_2O$ at $500^{\circ}C$	IWI
	10% Co/SiO ₂	$Co(NO_3)_2 \bullet 6H_2O$	Fumed SiO ₂	
	10% Co/MgO	Co(NO ₃) ₂ • 6H ₂ O	MgO (commercial)	
	10% Co/V ₂ O ₅	$Co(NO_3)_2 \bullet 6H_2O$	V_2O_5 (commercial)	
	10% Co/CeO ₂	$Co(NO_3)_2 \bullet 6H_2O$	CeO ₂ (commercial)	
	10% Co/Y ₂ O ₃	$Co(NO_3)_2 \bullet 6H_2O$	Y_2O_3 (commercial)	
	10% Co/ Al ₂ O ₃	$Co(NO_3)_2 \bullet 6H_2O$	Al ₂ O ₃ (commercial)	
	10% Co/ TiO ₂	$Co(NO_3)_2 \bullet 6H_2O$	TiO ₂ (commercial)	
	10% Co/ La ₂ O ₃	$Co(NO_3)_2 \bullet 6H_2O$	La ₂ O ₃ (commercial)	
	10% Co/ Sm ₂ O ₃	$Co(NO_3)_2 \bullet 6H_2O$	Sm ₂ O ₃ (commercial)	
	10% Co/5ZrO ₂ • ZnO	$Co(NO_3)_2 \bullet 6H_2O$	Co-Impregnating $Zn(NO_3)_2 \bullet 6H_2O$ into ZrO_2 along with $Co(NO_3)_2 \bullet 6H_2O$	
	10% Co/10ZrO ₂ • ZnO	$Co(NO_3)_2 \bullet 6H_2O$		
	10% Co/15ZrO ₂ • ZnO	$Co(NO_3)_2 \bullet 6H_2O$		
	10%Co/ZrO ₂	$Co(NO_3)_2 \bullet 6H_2O$	Zr propoxide	Sol-Gel

Initial focus of the characterization and activity study

Reactor System: Designed and built

System automation and User Interface using labView

Preliminary Flow Chart for Economic Analysis

Effect of synthesis parameters

Mass spectrometry duringTemperature-programmed Calcination: Evolution of the catalyst precursor

In the current study:

Ions followed:

- 18 for water;
 44 for CO₂;
 30 for NOx;
- 12 for verifying the assignment of 44 signal (not shown);

Cirrus MS

XRD Following Calcination

Crystalline phase of the support: Monoclinic Catalyst phase: well-dispersed, not highly crystalline

Bruker D8 Advance Diffractometer

Monochromatic Cu Ka1 X-ray source (1.5406 Å)

X-ray photoelectron spectroscopy following calcination

10%Co/ZrO₂ calcined at different temperatures for 3h

Kratos Axis Ultra XPS

In the current study:

- Supported on carbon tape
- Survey from 1200 eV to 0 eV and scans of Co 2p, O 1s, Zr 3d, and C 1s regions.

Used to determine surface content and oxidation state of surface species.

Laser Raman Spectroscopy Following Calcination

Transmission Electron Microscopy (TEM) Following Calcination

Tecnai TF-20 TEM

In the current study:

Samples were dispersed in ethanol.
Supported by lacey-formvar carbon

on a 200 mesh Cu grid.

Average Particle size of Co₃O₄: 24nm;

calcined at 400°C for 3h

10%Co/ZrO₂

Reduction Characterization by Temperature - programmed Reduction

Reduction Behavior-TPR

Nitrate evolution observed during reduction using Mass Spectrometry experiments

Reduction Characterization using X-ray photoelectron spectroscopy

Following reduction, Co is in +2 oxidation state.

Sample: >10%Co/ZrO₂
Calcination: >Temperature:400°C; >Time: 3h;
Reduction: >Temperature: 350°C; >Time:2h;
XPS: X-Ray source: (Al K_{α1});

Binding Energy (eV)

Reduction Characterization through consecutive TPR-TPO-TPR

Higher reduction temperatures could lead to sintering.

\$Sample: >10%Co/ZrO₂; \$Calcination: >Temperature:400°C; >Time: 3h; \$1st TPR >Reduction gas: 10%H₂/He;

Ramp rate:10°C/min.;

TEM Following Reduction

Sample: >10%Co/ZrO₂

Calcination:
 Temperature:
 400°C
 Time:
 3h

Reduction:
Temperature: 600°C
Time: 4h
Ramp rate: 2°C/min.

Characterization of Ethanol Adsorption Behavior by Pulsed Chemisorption

Strong correlation exists between ethanol uptake and metallic surface area.

EtOH Pulse Chemisorption:

>10%Co/ZrO₂(calcined at 400°C);
 >Reduced at 350°C for different time;
 >Pulsed ethanol vapor injection at room temperature;

Characterization of competing reactions: Temperature-programmed Desorption

Technical Accomplishments/Progress/Results from Year 1 In-Situ DRIFTS-TPRXII

Identification of surface species

- Bruker IFS66 spectrometer
 Mid-IR range (400-4000 cm⁻¹)
- MCT detector; KBr beamsplitter
- 1000 spectra averaged

10%Co/ZrO₂; Calcined at 400°C/12h; Reduced at 350°C under 5%H₂/He for 1h; Ethanol +water adsorption at room T for 1h; Spectra taken during TPRxn at 10°C/min under He flowing at 30ml/min.

Temperature Programmed Reaction

Temperature Programmed Reaction

Steady-State Reaction Experiments: Initial data

Publications and presentations

- Watson, R.B., Ozkan, U.S., Matter, P.H., Braden, D.,Song. H., "Alcohol Steam Reforming for Hydrogen Production" presented at the Annual Meeting of the American Institute of Chemical Engineers, Cincinnati, OH, November 2005.
- Ozkan, U.S., Song, H., Watson, R.B., Zhang, L., "Investigation of Bio-ethanol Steam Reforming over Co-based Catalysts" presented at the ACS National Meeting, Atlanta, GA, March 2006.
- Ozkan, U.S., Song, H., Watson, R.B., Zhang, L., "Investigation of Bio-ethanol Steam Reforming over Co-based Catalysts" *Prepr. Am.Chem.Soc. Div.Petr.Chem.*, 2006, 51(1)24).

Future Work

Kinetic and mechanistic investigations coupled with in-situ characterization

Performing energy and mass balances and economic analysis using Aspen[®]

Performance optimization

Investigation of catalyst deactivation and regeneration characteristics

Catalyst scale-up through industrial partnership

Project Summary

- Target: development of a catalytic system that does not rely on precious metals and that can be active in the 350°C-550°C temperature range.
- Relevance: help to develop small-scale distributed hydrogen production technologies from renewable liquid sources.
- Approach: develop a systematic optimization strategy for evaluating the catalytic performance of different catalyst systems.
- Accomplishments:
 - Successful launching of the project and establishment of the experimental protocols
 - Understanding the effect of synthesis parameters on the catalyst performance and establishing correlations
 - Understanding the competing reaction networks
 - Significant H₂ yields at high GHSV and low temperatures in initial steady-state runs
- Future Work: Mechanistic investigations coupled with in-situ characterization; economic analysis; deactivation/regeneration studies.

Umit S. Ozkan 614-292-6623

Ozkan.1@osu.edu

