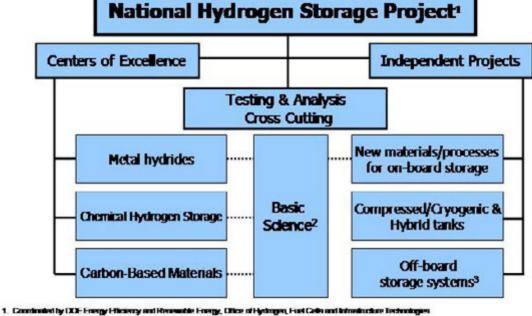


2006 Annual DOE Hydrogen Program Merit Review

Hydrogen Storage

Sunita Satyapal Carole Read Grace Ordaz George Thomas¹

¹ Retired, on assignment to DOE, Washington DC


On-board hydrogen storage to meet all performance (wt, vol, kinetics, etc.), safety and cost requirements and enable a more than 300 mile driving range.

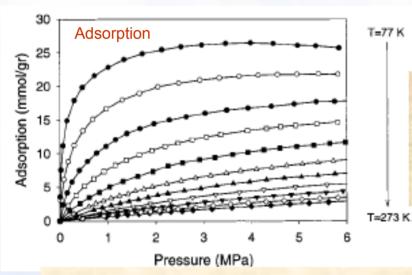
These Are System Targets Material capacities must be higher!	Targets	2010	2015	
	System Gravimetric Capacity (net)= "specific energy"	<mark>6 wt.%</mark> (7.2 MJ/kg) (2.0 kWh/kg)	9 wt.% (10.8 MJ/kg) (3.0 kWh/kg)	
	System Volumetric Capacity (net)= "energy density"	1.5 kWh/L (5.4 MJ/L) (45 g/L)	2.7 kWh/L (9.7 MJ/L) (81 g/L)	
	Storage system cost	\$4/kWh	\$2/kWh	
		(~\$133/kg H ₂)	(\$67/kg H ₂)	

Strategy and Program Plans

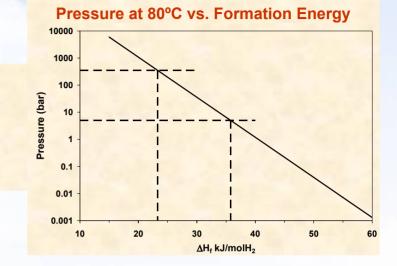
2. Beerd science for hydrogen storage conducted through DOE: Office of Science, Beerd Energy Sciences

2. Coordinated with Delivery Program element

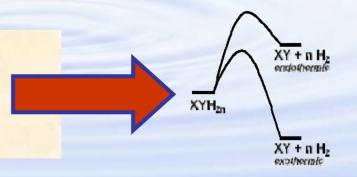
- Centers of Excellence (\$5-6M/yr) plus independent projects, launched at \$150 M over 5 years (plan-subject to appropriations)
- ~ 40 universities, 15 companies, 10 federal labs (including 17 new BES awards)
- Diverse portfolio addresses NAS recommendations


"...DOE should continue to elicit new concepts and ideas, because success in overcoming the major stumbling block of on-board storage is critical for the future of transportation use of fuel cells." (NRC Report,p.44)

Strategy: Optimize Materials Properties


Hydride heat of formation

- Pressure limits (20-35 kJ/molH₂)
- Refueling (<20 kJ/molH₂)


Activation barrier for regeneration

- Energy efficiency
- \succ Thermoneutral for H₂ release

Surface heat of adsorption

Operating temperature (> 100 K)
Release temperature (< 80 C)

Results: Examples of Progress (2005-2006) New materials with higher capacities being found

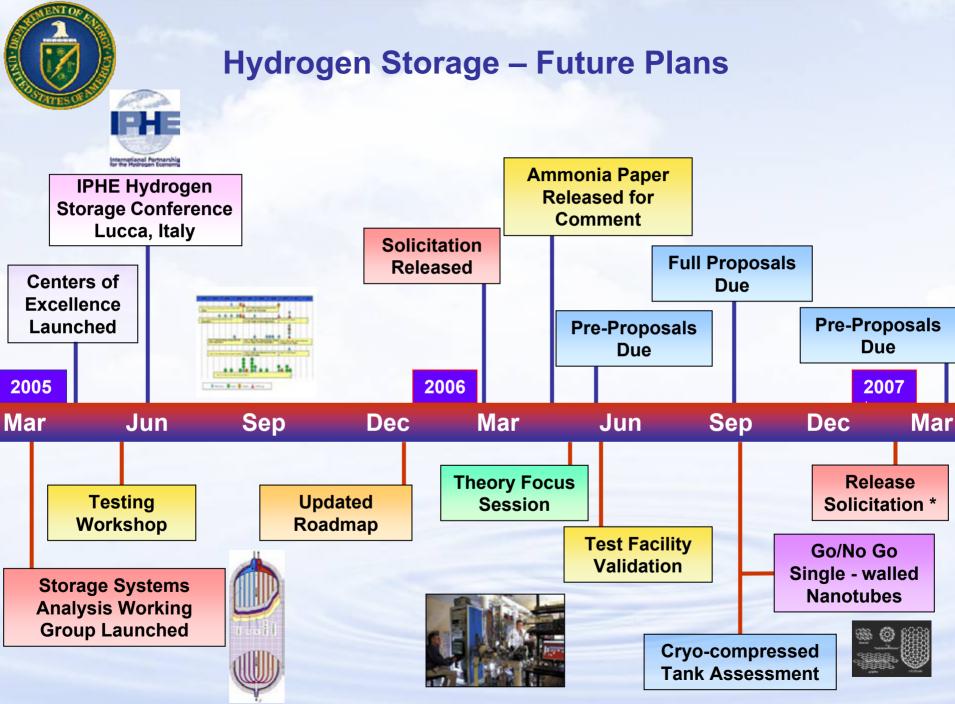
Material Capacities for Hydrogen Storage

Advanced Metal Hydrides	Chemical H ₂ Storage	Carbon/ Sorbents & New Materials
Li Mg Amides ~5.5wt%, ~2.8 kWh/L (>200 C) Alane ~7-10 wt%, ~5 kWh/L (<150 C) Li borohydrides >9 wt%, ~3.5 kWh/l (~350 C) Destabilized Binary hydrides ~5-7wt%, ~2-3 kWh/L (250 C) LiMgAlane, M-B-N-H ~ 7-8.8 wt%, > 1.3 kWh/L (~150-340 C)	Phenanthraline/ organic liquids ~7 wt%,~1.8 kWh/L (>150 C) Ammonia Borane/Scaffolds ~6 wt%,~2-4 kWh/L (<100 C)	Metal/carbon hybrids, MetCars 6 to > 8wt%*, ~1.3* kWh/l (*theory) Bridged catalysts IRMOF-8 ~1.8 wt.%,~0.3 kWh/L (room T) Metal-Organic Frameworks IRMOF-177 ~7 wt%, ~1 kWh/L (77 K)

Note: Material capacities only. No balance of plant. Estimates for volumetric capacities.

We are excited by these results but there are still issues... Next steps: Operability (Temperature, pressure, kinetics, etc.)

Other Examples of Accomplishments: Test Facility (SwRI), Storage Systems Analysis



Programmatic Accomplishments

- IPHE Hydrogen Storage
 Conference
 - Leveraging global activities
 - See www.iphe.net
- Expanded Basic Science
- Theory Focus Session
 - May 18, 2006
- Updated Targets & Multiyear Plan
 - New versions on web
- Addressing NAS recommendations (e.g. revolving solicitation for new concepts)

- Water Availability Model
 - For hydrolysis
- Paper on Ammonia
 - Draft on web for public comment
- Updated Roadmap & Targets
 - New versions on web
- Joint Tech Team meetings
 - Defining requirements

*Subject to appropriations

Current Solicitations

- 1) Applied Research and Development (EERE)
- Up to \$6M total (\$2M planned in FY07, subject to appropriations)
 Complements current DOE Centers of Excellence & existing Independent projects:
 - Material discovery
 - Engineering Science (including materials safety properties)
 - Systems, safety and environmental analyses
- 3-6 awards at \$200-400k/yr for 2-5 years
- Preproposals due <u>June 7</u>

- 2) Basic Science (Office of Science, BES)
- Up to \$52.5M total (\$17.5M/yr starting in FY07, subject to appropriations)
 - Novel Materials for Hydrogen Storage
 - Functional Membranes
 - Nanoscale Catalysts
- Preproposals due <u>July 6</u>

See http://www.grants.gov or follow links from www.hydrogen.energy.gov

For More Information

Hydrogen Storage Team

Sunita Satyapal, Team Leader

Overall Storage/ FreedomCAR Tech Team/International 202-586-2336 sunita.satyapal@ee.doe.gov **Grace Ordaz** Chemical Hydrides,Chemical Hydrogen Storage Center of Excellence 202-586-8350 grace.ordaz@ee.doe.gov

George Thomas*

On Assignment to DOE *retired, Sandia 202-586-8058 george.thomas@ee.doe.gov

Carole Read Metal Hydrides, Metal Hydride Center

of Excellence 202-586-3152 carole.read@ee.doe.gov

New Hire

Carbon/Sorbents, Carbon

Center of Excellence see website below (closes May 19)

Jesse Adams 303-275-4954 jesse.adams@go.doe.gov

Basic Science:

James Alkire 303-275-4795 jim.alkire@ee.doe.gov Paul Bakke 303-275-4916 paul.bakke@go.doe.gov

 e:
 Harriet Kung
 or
 Tim Fitzsimmons

 (harriet.kung@science.doe.gov)
 or
 (tim.fitzsimmons@science.doe.gov)

www.hydrogen.energy.gov

Additional Information

Hydrogen Storage "Grand Challenge" Partners

Chemical

Centers of Excellence

Meta	al H	lyd	rid	le
	Ce	nte	er	

National Laboratory: Sandia-Livermore

Industrial partners: General Electric HRL Laboratories Intematix Corp.

Universities:

CalTech Stanford Pitt/Carnegie Mellon Hawaii Illinois Nevada-Reno Utah

Federal Lab Partners:

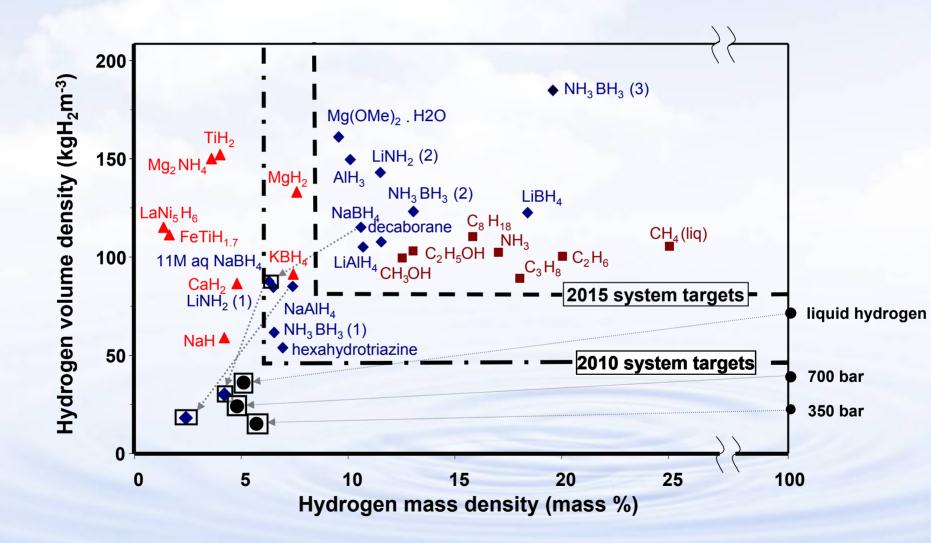
Brookhaven JPL NIST Oak Ridge Savannah River Carbon Materials Center

- National Laboratory: NREL
- Industrial partners: Air Products & Chemicals
- Universities: CalTech Duke Penn State Rice Michigan North Carolina Pennsylvania

Federal Lab Partners: Lawrence Livermore NIST Oak Ridge

Hydrogen CenterNational
Laboratories:
Los Alamos
Pacific NorthwestIndustrial partners:
Intematix Corp.
Millennium Cell
Rohm & Haas
US BoraxUniversities:

Northern Arizona Penn State Alabama California-Davis UCLA Pennsylvania Washington



Independent Projects

New Materials & Concepts Alfred University Carnegie Institute of Washington **Cleveland State University** Michigan Technological University TOFTEC **UC-Berkelev** UC-Santa Barbara University of Connecticut University of Michigan University of Missouri **High-Capacity Hydrides** UTRC UOP Savannah River NL **Carbon-based Materials** State University of New York Gas Technology Institute UPenn & Drexel Univ. **Chemical Hydrogen Storage** Air Products & Chemicals RTI Millennium Cell Safe Hydrogen LLC **OffBoard, Tanks, Analysis & Testing** Gas Technology Institute (w/Delivery) Lawrence Livermore Quantum Argonne Nat'l Lab & TIAX LLC **SwRI**

No current system meets targets, <u>but</u> there are some materials with potential...

Strategy & Results

Broad Portfolio Focused on Materials Technologies

Challenges are technology specific: Pros and Cons for each Tanks (to 10,000 psi), Chemical hydrides (CH), Metal Hydrides (MH), Carbon/Sorbents (S)

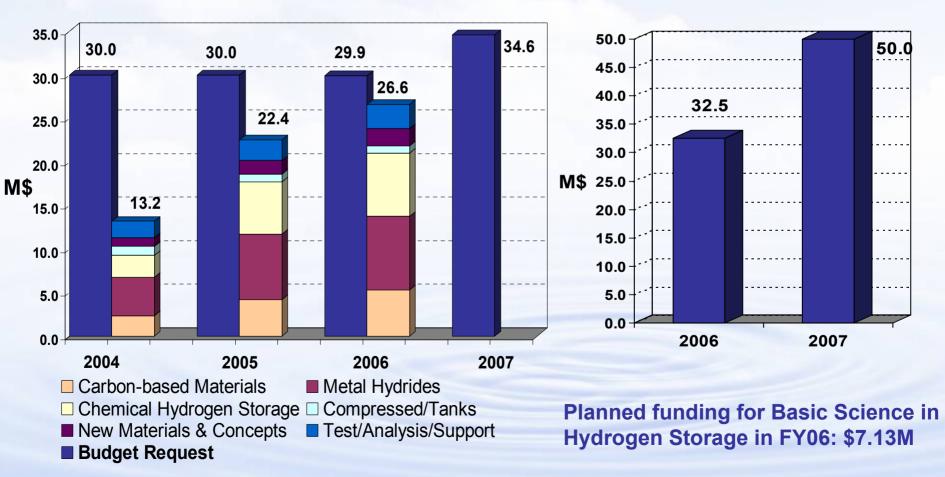
	Key 2010 Targets:	Tanks	СН	МН	S
Test Demonstrating Factors International Contract States And	Volume (1.5 kWh/L)	Н	М	М	M/H
	Weight (2.0 kWh/kg)	М	М	M/H	М
Image: Control of the set o	Cost (\$4/kWh)	M/H	M/H*	M/H	M/H
RD&D Plan: Tasks in each area www.eere.energy.gov/ hydrogenandfuelcells	Refueling Time (3 min, for 5 kg)	L	L	M/H	М
Thermal Mgmt: Key Issues	Discharge Kinetics (0.02 g/s/kW)	L	М	М	М
for MH (CH, C)	Durability (1000 cycles)	L	М	М	М

H = High (Significant challenge)

H = Medium/High

M = Medium

= Low (minimal challenge)


For CH, MH and S- assessment based on potential to meet targets, though systems not yet demonstrated in most cases. *For CH: Storage system may meet cost but fuel cost of \$2-\$3/kg is challenge for CH regeneration.

Hydrogen Storage Budget

DOE- EERE FY2007 Budget Request = \$34.6M FY2006 Funding = \$26.6M

DOE- Office of Science FY2007 Budget Request = \$50.0M FY2006 Funding = \$32.5M

