

imagination at work

Lightweight Intermetallics for Hydrogen Storage

DOE Award #: DE-FC3605GO15062

J.-C. Zhao

Matt Andrus, Jun Cui, Yan Gao, John Lemmon, Tom Raber, Job Rijssenbeek, Gosia Rubinsztajn, & Grigorii Soloveichik

GE Global Research

May 17th, 2006

- A Member of the DOE Metal Hydride Center of Excellence -

This presentation does not contain any proprietary or confidential information

Project ID #14

Program Overview

Timeline

- Project start date: FY05
- Project end date: FY09
- Percent complete: 30%

Barriers

Right heat of formation Absorption / desorption kinetics

Budget

- Total Project Funding: \$3.47M
 - DOE Share: \$2.78MGE Share: \$0.69M
- Funding Received for FY05 \$450K (DOE), \$112K (GE)
- Funding Received for FY06 \$450K (DOE), \$112K (GE)

Partners/Collaborations

- Member of DOE MHCoE
- Collaborations with BNL, NIST, UIUC, CMU, U. Pitt, SNL, Univ. Nevada

Objective

Overall	Discover and develop a high capacity (> 6 wt.%) lightweight hydride capable of meeting or exceeding the 2010 DOE/FreedomCAR targets.
FY05	 Develop a high-efficiency combinatorial synthesis and high-throughput screening methodology for metal hydride discovery
	 Identify hydrides from combinatorial samples and validate them through gram-quantity sample tests
FY06	 Identify the crystal structures of Mg(BH₄)₂ using XRD, neutron diffraction and computer modeling
	 Perform combinatorial and computational screening of catalysts and dopants for Mg(BH₄)₂

Approach

Robust combinatorial/high-throughput methodology developed & validated by confirming the observations with bulk PCT tests

Lemmon, Rubinsztajn, Cui, Rijssenbeek, Gao & Zhao

Combi findings in aluminides & silicides

- Screened > 10 ternary systems (AI-Li-Si, AI-Mg-Ti, AI-Si-Ti, AI-Li-Mn, Li-Na-Si, etc.)
- No promising hydrides found, suspending efforts in this area

Time (Hours)

imagination at work

Lemmon, Rubinsztajn, Soloveichik, Cui, Rijssenbeek, Zhao

Metal hydrides against DOE targets

Combined In-situ XRD and gas analysis

NATIO

Looking inside amide-hydride reactions

 $2 \operatorname{LiNH}_2 + \operatorname{MgH}_2 \rightarrow \operatorname{``Li}_2\operatorname{Mg(NH}_2)_2$ " $\leftarrow \rightarrow 2 \operatorname{LiH} + \operatorname{Mg(NH}_2)_2$ 5.6 wt % H₂ @ ~200 °C (Luo et al., Sandia)

Gas analysis during H₂ release reaction

- Combined RGA & in-situ XRD provide unmatched information about reaction pathways
- Studied NH₃ formation in the hydride-imide systems
- NH₃ still there at low level at 2nd and subsequent desorption

Vacancy ordering determines structure

- Determined 3 new imide crystal structures using high-resolution X-ray & neutron diffraction
- Identified a new family of imides with formula $Li_{4-2x}Mg_x(NH)_2$ (up to 6 wt % H_2 @ ~220 °C)

```
Job Rijssenbeek, Yan Gao et al.
imagination at work
```


Crystal structure of α -Li₂Mg(NH)₂

Imide-amide systems

- Crystal structure understanding led to Li₆Mg(NH)₄: 6 wt.% @ ~220°C
- No effective catalysts found from combinatorial screening work
- Higher (6.9) wt.% (i.e., $8LiH + 3Mg(NH_2)_2 \rightarrow 4Li_2NH + Mg_3N_2 + 8H_2$) only at >~340°C
- Suspended effort at GE available to help the amide-imide group in MHCoE

Job Rijssenbeek & Yan Gao

Metal hydrides against DOE targets

$Mg(BH_4)_2$

- $Mg(BH_4)_2$: one of the only few hydrides that may meet the DOE 2015 wt.% target
- ΔH much more favorable than LiBH₄

$Mg(BH_4)_2$

- Only Step 2 is currently reversible (~3 wt % H₂)
- Need better structural & catalyst understanding to make Step 1 reversible

$Mg(BH_4)_2$

- Have determined the crystal structure of the solvated (TMEDA) form
- Desolvated compound may have a different Mg:BH₄ ration (i.e., <2:1)
- Isotope labeling of Mg(¹¹BD₄)₂ near completion.
 - Necessary for high quality neutron diffraction
- DFT modeling needed for structure checking and confirmation
- Doping & catalyst study ongoing

Structural identification is essential to doping & catalyst study

Future Work FY06

- Combinatorial screening of dopants and catalysts for Mg(BH₄)₂
- Crystal structure identification of Mg(BH₄)₂ BNL, NIST, UIUC
- Computational prediction of dopants for Mg(BH₄)₂ UIUC, CMU, U Pitt
- Thermal conductivity measurements (Sandia) & Vapor pressure measurements (Univ. Nevada)

<u>FY07</u>

- Continue on catalyst and doping study of Mg(BH₄)₂ to improve reversibility
- Perform system-level evaluation of properties such as cycling stability/degradation
- Go/No-Go for Mg(BH₄)₂ reversibility: < 450°C & < 200 bar

Summary

- Robust combinatorial/HTS methodology developed met our '05 deliverable
- Focus on $Mg(BH_4)_2$ in FY06-07
- Use combi/HTS expertise to identify dopants/catalysts
- Use unique in-situ capabilities to understand and then tailor reaction pathways
- Collaborate with MHCoE partners to explore Mg(BH₄)₂ as a potential high-capacity H₂ storage material

imagination at work

ecomagination[®]

Publications & Presentations

- Job Rijssenbeek presented a poster "Characterization of the titanium catalyst in NaAlH₄", at IPHE International Hydrogen Storage Technology Conference, Lucca, Italy, June '05.
- John Lemmon presented a poster "High-throughput hydride discovery" at Metal - Hydrogen Gordon Conference (July '05)
- Job Rijssenbeek presented a poster "Phase formation and reaction pathway of Mg(NH₂)₂ + 2 LiH mixtures for reversible hydrogen storage" at Metal - Hydrogen Gordon Conference (July '05)
- Job Rijssenbeek gave a talk "Crystal structure determination and reaction pathway of amide-hydride mixtures" the MRS Fall Meeting, Boston (Nov '05)
- J.-C. Zhao attended the IEA Task 17 meeting in Takeshita, Japan & presented talk on "Lightweight intermetallics for hydrogen storage" (Oct '05)
- J.-C. Zhao attended the TMS meeting in San Antonio and presented an invited talk on "Reversible hydrogen storage in mixtures of Mg(NH₂)₂ and LiH studied by X-ray and neutron diffraction" (March '06)
- Our paper on "Crystal structure determination and reaction pathway of amide-hydride mixtures" is in the final stage of preparation

