

Thermodynamically Tuned Nanophase Materials for Reversible Hydrogen Storage

Gregory L. Olson and John J. Vajo HRL Laboratories, LLC Malibu, CA

- A Participant in the DOE Metal Hydride Center of Excellence -

May 17, 2006

DOE 2006 Hydrogen Program Annual Review, Washington, D.C., May 16-19, 2006

> Project ID # ST16

This presentation does not contain any proprietary or confidential information

Timeline

- Project start date: March 2005
- Project end date*: Feb 2010
- Percent complete*: 25% * Assume support for Phases 1 and 2

Budget

Total Project Funding:

Phase One - 3 years:	\$1.65M
– DOE Share:	\$1.20M
 Contractor Share: 	\$0.45M
Phase Two - 2 years:	\$1.1M
– DOE Share:	\$0.8M
 Contractor Share: 	\$0.3M

• Funding for FY06:

\$400K (DOE), \$150K (cost share)

Technical Targets

	2007	2010
Gravimetric capacity:	4.5%	6%
Volumetric capacity:	0.036 kg/L	0.045 kg/L
Min/Max delivery temp:	-30/85°C	-40/85°C

Technical Barriers

- System weight and cost
- Large binding energies and slow H₂ sorption kinetics in light metal hydrides

Partners

- Participant in DOE MHCoE collaborations with partners on synthesis, modeling, and advanced characterization
- Coordinator of MHCoE sub-team on destabilized hydrides – sub-team comprises 10 organizations in MHCoE

Overall

To develop and demonstrate a safe and cost-effective lightmetal hydride material system that meets or exceeds the DOE goals for reversible on-board hydrogen storage

2005/2006

• To identify and test new high capacity Li- and Mg-based destabilized hydrides

- > Screen candidate LiBH₄ + MgX destabilized systems and evaluate energetics and kinetics
- > Down-select systems for additional work

To apply nano-engineering methods to address kinetics limitations

- > Develop solid state approaches for efficient synthesis of nanoscale reactants
- > Assess hydrogen exchange rates in nanoscale MgH₂/Si and destabilized complex hydrides
- > Evaluate sorption kinetics of reversible metal hydrides in nanoporous scaffold hosts

Approach: – Hydride Destabilization and Nano-engineering

Hydride Destabilization

(addresses thermodynamics challenge)

Reduce reaction enthalpy by forming dehydrogenated alloy

- If alloy is stable w.r.t metal then hydride is destabilized
- System cycles between H-containing state and metal alloy \Rightarrow *lower* ΔH

Destabilization results in lower $\triangle H$ and $T_{1 bar}$

From Petricevic, et al., Carbon 39, 857 (2001)

Nano-engineering

(addresses kinetics challenge)

Decrease diffusion distances, nanoporous scaffolding

- Short H diffusion distance in nanoparticles: fast exchange
- More efficient catalysis pathways
- Nanoparticles, encapsulated as needed to mitigate sintering
- Nano-scaffolds as hosts for nanostructured hydrides:
 ⇒ structure- directing agents, mitigate particle agglomeration

Enhanced reaction rate and improved cycling

- Potential systems include: X = F, CI, OH, O, S, Se, CO₃, Si, SO₄, Cu, Ge, & Ni
 - > 12 destabilization reactions identified and characterized using HSC modeling
 - > H-capacities ranging from 5.4-9.6 wt.%, $T_{1 \text{ bar}}$ from -10°C to 430°C
- Partial reversibility demonstrated in three systems:
 - > $2\text{LiBH}_4 + \text{MgF}_2 \leftrightarrow 2\text{LiF} + \text{MgB}_2 + 4\text{H}_2$ (7.6 wt.%, T_{1 bar} =150°C) H₂ uptake ~6.5% at 300-350°C; dehydrogenation 5.3%
 - > 2LiBH₄ + MgS ↔ Li₂S + MgB₂ + 4H₂ (8.0 wt.%, T_{1 bar} = 170°C))
 H₂ uptake ~6% at 350°C; dehydrogenation ~4.3%; 2nd cycle uptake <4%</p>
 - > $2\text{LiBH}_4 + \text{MgSe} \leftrightarrow \text{Li}_2\text{Se} + \text{MgB}_2 + 4\text{H}_2$ (5.4 wt.%, $\text{T}_{1 \text{ bar}} = 70^{\circ}\text{C}$) H₂ uptake ~4.5% at 350°C; dehydrogenation ~3.3%
 - Results show that destabilization is a promising approach for overcoming thermodynamics limitations in light-metal systems
 - However, exptl temps >> equil temps ⇒ all systems kinetically limited

New Destabilized System

 $2LiBH_4 + MgF_2 \leftrightarrow 2LiF + MgB_2 + 4H_2$ (7.6%)

Summary of Destabilized Systems

- Destabilization provides pathway to reaching system targets
- Kinetics issues dominate as temperatures are reduced

MgH₂/Si

– Enhancing Kinetics and Reversibility –

 $2MgH_2 + 1/2Si \rightarrow Mg_2Si + 2H_2$

- Destabilized system \Rightarrow 5 wt.%, 0.083 kg/L; T_{1 bar} \approx 30°C
- However, slow kinetics; reversibility not demonstrated

Additional collaborations with MHCoE partners on modeling, synthesis, catalysis and characterization

Dilution Milling and Nano-Ni Catalyst

– Effect on H₂ Desorption in MgH₂/Si –

- Dehydrogenation rate improved by dilution milling and nano-Ni catalyst
- Dilution milling demonstrates utility of nanoparticles for improving kinetics

Mg₂Si Nanoparticle Synthesis and Testing - Solid State Reaction from Si Nanoparticles -

$Si(nano) + 2Mg \Rightarrow Mg_2Si(nano)$

- Use nano-Si to define nanoscale morphology •
- Use different reactive Mg sources to retain nanoscale morphology ٠

Mg₂Si formation evident from XRD; particle size confirmed by TEM

No hydrogenation observed

Successful hydrogenation may require smaller particles (<50 nm), reduced surface oxide, better catalyst incorporation

- Improve kinetics* by limiting particle size and reducing diffusion distances
- This work: explore effect of C-aerogel scaffolds on sorption properties of reversible hydrides* => Initial studies using LiBH₄ (basis for destabilized systems)

- LiBH₄ (→ LiH + B + 1.5H₂) has high capacity (13.6 wt.%), but slow kinetics, and poor reversibility
- C-aerogels: 10 to 30 nm pores, 0.80 to 1.38 cm³/g pore volume
- LiBH₄ incorporated from melt (25 to 50 wt.% loadings) into aerogel cubes (scraped to remove external material)
- Also investigated activated-C (<2 nm pores) and graphite (non-porous control)

* Demonstrated for NH₃BH₃ in silica by Gutowska et al. (Angew. Chem. Int. Ed. 2005, 44, 3578)

Incorporation in Scaffold Reduces Dehydrogenation Temperature

TGA (10°C/min) for H₂ desorption: LiBH₄ \rightarrow LiH + B + 1.5H₂

- Faster kinetics in scaffolds lowers reaction temperature up to 100°C
- Dehydrogenation temperature depends on pore size

Enhanced Dehydrogenation Rate in in LiBH₄/C-aerogel

- Nanoporous scaffold significantly improves dehydrogenation rate
- Increased pore volume will result in higher capacity

Confinement of LiBH₄ in **Nanoporous Host Improves Cycling**

Cycle Number

- Enhanced cycling capacity in nanoporous scaffolds
- Diminished capacity with increased cycling

- Only LiH in dehydrogenated sample
- Both LiH and LiBH₄ after rehydrogenation
- Peak broadening at high angles strain?
- Not all LiH and B transforms back to LiBH₄
- · No apparent interaction with scaffold
- Pore size may affect max. size of LiH and B
- Non-reactive B and LiH identified by XRD and NMR
- Partial reversibility of LiBH₄ in aerogel corroborates volumetric data

Summary – FY 2005/06 –

New Destabilized Systems

- Destabilization shown to be a practical method for overcoming thermo. limitations
- Reversibility measured in several new systems: LiBH₄/MgX (X= F₂,S, Se) However, temperatures, capacity and reversibility do not meet goals
- Additional reactions identified; new systems being explored by theory group

Nanoparticles / MgH₂-Si

- Synthesized nano-Mg₂Si using nanoscale Si precursors and self-propagating rxns
- Conducted systematic milling study varied milling conditions, sample dilution, composition, H₂ overpressure, Ni and Pd catalyst incorporation
- Dilution milling and nano-catalyst dramatically improve dehydrogenation kinetics
- No reversibility (hydrogenation) observed thus far Reversibility also not seen by other MHCoE partners (Stanford, Sandia, Hawaii, Intematix)

Nanoporous Scaffolds

- LiBH₄ in C-aerogel result in faster sorption kinetics; smaller pores yield lower temps
- Small length scales may prevent large LiH and B particles from forming improves cycling capacity

New Systems

- Explore additional LiBH₄+MgX reactions
- Investigate new Li-Si-N systems

Nanoparticles / MgH₂-Si

- Use smaller particles with narrow size distribution
- Reduce surface oxide
- Test improved catalysts and other alloying agents

Nanoporous Scaffolds

- Incorporate destabilizing agents and catalysts
- Increase pore volume (to increase capacity)
- Explore other nanoporous materials

Destabilized System	Benchmark	2005 Status	2005/06 Progress	Future
MgH₂/Si 5.0 wt.%, 0.083 kg/L est. T _{1 bar} =30°C	Prototype system <2007 goal (including system penalty)	 Kinetics too slow T (dehyd) >200°C Hydrogenation not achieved 	 Lowered dehydr. temp by >100°C Reversibility still not observed 	 Complete nanoparticle study for reversibility Go/no-go Sept '06
LiBH ₄ / MgH ₂ 11.4 wt.%, 0.095 kg/L est. T _{1 bar} =170°C	Could meet 2010 system cap. goal (assuming 50% system penalty)	 Kinetics too slow T (dehyd) ~400°C T_{1 bar} too high 	Lowered LiBH ₄ dehydrogenation temp by 100°C (in C-scaffold)	 Incorporate full destab. system in scaffold Optimize scaffold
LiBH ₄ / MgX 4-10 wt.%, est. T _{1 bar} : -10 to 430°C	Could meet 2007 goal (including moderate system penalty)	New untested systems	 Sorption meas.: X=F, S, Se, CO₃ F, S, Se partially reversible – slow kinetics 	 Test new destab. agents, and Li-Si-N systems Use nano-engineering to improve kinetics

Program Emphasis

- 2005/06 and 2006/07 -

Increased emphasis in 2006/07 on new destabilized systems and hydrides in nanoporous scaffolds

Destabilized Hydrides Sub-Team

– Summary of Program Plans –

Back-up Slides

Task 1. Destabilized Hydride Strategies and New Systems

- Assess new complex and higher order alloys of Li/Mg with low-Z elements (HRL)
- Conduct combinatorial study; down-select best systems (Internatix, HRL, JPL)

Task 2. Nano-engineering for Improved Kinetics

- Nano-engineering & sorption kinetics in MgH₂/Si (*HRL, Caltech, SNL, Utah, UH*)
- Assess reactions/kinetics in thin film model systems (Stanford, HRL)
- Enhance kinetics in new Li/Mg systems (HRL, Stanford, NIST, UIUC, Utah, NIST)
- Evaluate nanoparticle sintering; develop mitigation strategies (HRL)

Task 3. Catalysts for Destabilized Hydrides

- Identify/test new nano-scale catalysts (Intematix, UH, HRL)
- Develop methods for incorporation into destabilized systems (Internatix, UH, HRL)
- Quantify role of bulk vs. surface catalytic effects (Stanford, HRL)

Task 4. Theory and Modeling

- Model reactions/kinetics in MgH₂/Si (*Pitt/CMU*)
- Calculate thermo properties of new (complex) systems (*Pitt/CMU, UIUC, NIST*)
- Systematic study of bonding, structure, stability (UIUC)

MgH₂ / Si – Prototype Destabilized Hydride System –

- Thermodynamic calculations predict behavior in desired P,T range
- However, reversibility not yet achieved nano-engineering approaches being pursued to overcome kinetic barriers

Background: LiBH₄ / MgH₂

- (11.4 wt. % and 0.095 kg/L) -

Formation of MgB₂ estimated to reduce $T_{1 bar}$ by ~ 240 °C

"Dilution Milling" for Formation of Dispersed Reactants

Dilution of MgH₂ in excess Si yields dispersed Mg₂Si particles without agglomeration

Straightforward method to test H₂ exchange kinetics in isolated particles

- Samples milled 5 hrs @ 400 rpm; 1 sample milled additional 5 mins with nano-Ni (50nm)
- MgH₂ dehydrogenation in Sieverts apparatus; 2°/min temp ramp; dwell at 200°C

Amount of desorbed H₂ from MgH₂ increases by ~6x with addition of nano-Ni catalyst during milling

Si Nanoparticle Synthesis and Characterization by TEM

Si nanoparticles formed by gas condensation "5 nm" Si starting material (Meliorum, Inc.) (Caltech) 5 nm 5 nm 100 nn

After reaction with MgH₂ to form Mg₂Si

Gas phase condensation produces generally smaller particles with narrower size distribution ⇒ Promising as nano-Mg₂Si

⇒ Promising as nano-Mg₂Si precursor

Aerogel Synthesis and LiBH₄ Incorporation

- Carbon aerogel synthesized by resorcinol + formaldehyde condensation
- Aerogel filled with LiBH₄ by infiltration from melt:

Aerogel Pore Size Distributions

- Pore sizes approx. 13 and 25 nm
- Pore volumes: 0.80 to 1.38 cm³/g (0.33 to 0.57 cm³ carbon/cm³ free space)
- 80-90% of pore space filled with LiBH₄
- Contains up to 45 wt.% LiBH₄ (pore size dependent)
- Also investigated activated-C (<2 nm pores) and graphite (non-porous control)

Presentations to date:

J.J. Vajo, "Destabilization of Strongly Bound Hydrides for Hydrogen Storage Applications" (invited presentation) Gordon Research Conference Hydrogen-Metal Systems Waterville, ME, (July 10-15, 2005).

G.L. Olson, J.J. Vajo, A.F. Gross, T. M. Salguero, S.L. Skeith, and B. M. Clemens, *"Nanostructure Engineering for Improved Reaction Rates in Destabilized Hydrides"* (poster presentation) Gordon Research Conference Hydrogen-Metal Systems Waterville, ME, (July 10-15, 2005).

G.L. Olson and J.J. Vajo "Destabilized Hydrides" presentation to FreedomCAR Hydrogen Storage Tech Team (1/12/2006).

A. F. Gross, J.J. Vajo, S.L. Skeith, and G.L Olson, *"Enhanced Hydrogen Storage Properties of Metal Hydrides using Nanoporous Carbon Scaffolds"* at American Chemical Society Meeting, Atlanta, GA (March 27-31, 2006).

J.J. Vajo, T.T. Salguero, A.F. Gross, S.L. Skeith, and G. L. Olson, "Kinetics and Thermodynamics of Destabilized Hydride Systems" (invited presentation) Materials Research Society Spring Meeting, San Francisco, CA (April 17-21, 2006).

Upcoming Presentations:

J.J. Vajo, T.T. Salguero, A.F. Gross, S.L. Skeith, and G. L. Olson "*Destabilization Strategies and Kinetics Challenges in Light Metal Hydride Systems*" (Invited presentation), International Symposium on Metal-Hydrogen Systems: Fundamentals and Applications, Lahaina, Maui, Hawaii (Oct. 1-6, 2006).

Publications (planned for 2006)

J.J. Vajo, T.T. Salguero, A.F. Gross, S.L. Skeith, and G. L. Olson "*Destabilization Strategies and Kinetics Challenges in Light Metal Hydride Systems*" (to be submitted to J. Alloys and Compounds – special proceedings issue for MH2006 Conference) (Oct. 1-6, 2006).

A.F. Gross, J.J. Vajo, S.L. Skeith, and G.L Olson, "Reversible Hydrides in Nanoporous Scaffolds" (in preparation).

G.L. Olson, J.J. Vajo, A.F. Gross, S.L. Skeith, R. Cumberland, and C. C. Ahn, *"Enhanced Reaction Kinetics in Nanostructured MgH₂/Si"* (planned).

- A destabilized system that meets all of the DOE thermodynamics requirements has not yet been identified
 - System capacity remains problematic (i.e., a 50% system penalty would require an 18% grav. capacity material to meet 2015 goal – a path to a such a material is unclear)
 - Although calculations show acceptable T_{1 bar} values are possible not yet experimentally confirmed

• Kinetics in light metal hydrides are prohibitively slow

- Our approach relies on nano-engineering to reduce diffusion distances and improve reaction rates
- At this point we are uncertain if this approach will enable us to meet DOE goals for delivery temperature and refueling rates
- Sintering/agglomeration of nanoparticles could be a serious problem (reduced H₂ exchange rates)
 - Scaffolds show promise for enhancing kinetics; may also mitigate sintering
 - However, scaffolds also introduce a capacity penalty can penalty be reduced to acceptable levels? – high pore volume scaffolds needed