

Reversible Hydrogen Storage Materials – Structure, Chemistry and Electronic Structure

Ian Robertson and Duane Johnson University of Illinois A Participant in the DOE Metal Hydride Center of Excellence

DOE 2006. Hydrogen Program Annual Review, Washington, D.C., 2006

This presentation does not contain any proprietary or confidential information

Project ID: ST18

Timeline

Start date: FY 05 End Date: FY 09 Percent Complete: 15%

Budget

- Total project funding
 - \$1,566,746
 - DOE Share: \$1,253,396
 - UIUC Share: \$ 313,350
 Funding for FY05: \$150,000
 Funding for FY 06: \$175,000

Barriers addressed

Optimization of absorption /desorption kinetics of solid-state storage systems.

Theoretical modeling to guide material development

Improve understanding of fundamental processes impacting alloy development that surpass targets.

Partners

Participants in the DOE Metal Hydride Center of Excellence, specifically Sandia National Laboratory, HRL, University of Hawaii, University of Pittsburgh, General Electric.

Overall	 Support and guide development of complex metal hydrides to meet systems requirements by provide center partners with structural and chemical insight of candidate systems. provide experimentally based and validated theoretical modeling.
2006	 to determine degradation during transfer to analytical instruments and conduct structural and chemical analysis of systems of interest to partners. developed structural database for information sharing with partners.
2007	 to provide theoretical modeling to guide materials development. to provide understanding of role of catalysts and to determine nature, state and effect of surface contaminants on uptake and release.

Our approach combines use of advanced characterization capabilities with first principles electronic and thermodynamic calculations.

The structural database. Data sharing

Home Structure	All VAS electro	SP str nic <mark>S1</mark>	uctur ructu	es (xy ral Do	vx), e	energies ise (http	(<i>∆H</i>), p://dat	are a.ms	e sto e.uiu	ored into uc.edu)
2//01/										
S	Structures				: Rece	ently added	: Other			
ion: Prname:	Name	Energy (eV/atom)	FE (eV/atom)	Error (eV/atom)	Pressure (kbars)	Stoichiometry	Composition	# Atoms	# Types	Author
sword:	LiBH4-hex	-4.190185	null	.01	67	2:8:2	B H Li	12	3	Nikolai Zarkevich
	LiBH4-ort	-4.22446	null	.01	82	4:16:4	B H Li	24	3	Nikolai Zarkevich
arch results by:	Check All (U 2.g. "clic	incheck All)	e, stru	cture a	ppears	via JMOl	_© with >	kyz co	ordina	ites, etc.
yword: Case insenitive					1	N. Zarkev	ich and D	D.D. J	ohnso	n (2005)
ttice:						O	RACLE®	type	date	abase.

Using the correct physics we can construct van't Hoff plot!

Can calculate the enthalpy change or latent heat and Gibbs Free Energy by including Electronic + vibrational (harmonic) + librational energies.

Debate about stable high temperature phase – get wrong answer if you do not include rotational energies

Important missing term

Librational mode is approximated by a free rotation and we obtain Free Energy per LiBH4 *analytically*

$$F_{r} = -k_{B}T\left(\frac{\ln T}{2} + \ln \frac{\sqrt{2\pi k_{B}I_{3}}}{3\hbar}\right)$$

*All other vibrational modes are obtained via VASP/PHONON code, but no imaginary frequency. Therefore, the hexagonal phase is not inherently unstable as predicted in previous models.

van't Hoff plot DFT Theory and Experiment

Experimental Data (HRL)

Vajo, Skeith, and Mertens, *J. Phys. Chem.* B 109, 3719 (2005).

Theory using DFT*

$$\ln P = -\frac{\Delta G_{elec} + \Delta G_{vibr}}{k_B T} + \left(\frac{7}{2} - \frac{1}{4}\right) \ln T + E$$

This has the proper well-known general form of

$$\ln P = \frac{A}{T} + B \ln T + CT + DT^2 + E$$

* DFT was shifted by a constant ΔE arising from nuclear degrees of freedom, which is not included

$2\text{LiBH}_4 + \text{MgH}_2 \leftrightarrow 2\text{LiH} + \text{MgB}_2 + 4\text{H}_2^{\uparrow}$

How do we compare Latent Heat determined from theory and measured experimentally?

Direct vs Assessed from van't Hoff Plot

But, experimentally, $\Delta H(T)$ is extracted assuming

 $\ln P \approx A/T + E$

 $\Delta H(T) = -Nk_B \frac{d(\ln P)}{d(1/T)}$

that is van't Hoff slope is a constant $\Delta H \sim A$

Comparison of DFT $\Delta H(T)$, $\Delta H \approx A$, and ΔH from experiment.

 ✓ Excellent agreement between theory and experiment when assessed from van't Hoff plot using a constant slope.

Finding the location of the elusive catalyst particles

(Univ. of Hawaii)

Chemical map of 2 mol % TiCl₃ doped NaAlH₄, 10x cycle

- Acquisition of Gatan transfer stage prevents excess oxidation during transfer.
- EDS elemental maps show distribution after ten cycles – Ti still highly localized and associated with Cl.
- Growth of Na-bearing crystals may alter composition of storage material
 - Both heat and electron beam stimulated growth

Na crystal growth in different crystal of Ti doped NaAlH₄, ~ 70 °C

No longer a Center material, presented to show capability as current effort not yet cleared for presentation

Location of the Ti. Electron energy loss spectroscopy

Sub-doublets appear only in TiO₂

From this can determine density of states – compare with theory.

(collaboration with HRL)

- Direct imaging of oxide and its thickness using energy-filtered TEM
- Oxide is present prior to microscopy

How much does oxide thickness on Mg and Si slow H penetration into lattice?

Does this affect H uptake?

 $MgH_2 + \frac{1}{2}$ Si + 0.05 Nb₂O₅, previously dehydrided EFTEM at 100 eV, 20 eV slit Shows oxide on outside of Si particle.

Understanding Processing

(collaboration with HRL)

Dynamic studies not showing elemental segregation – need higher nominal temperatures Nb not well distributed after ball milling . Need to verify effectiveness of "dilution milling."

Element redistribution during discharge cycle (Collaboration with HRL)

Above 240 °C, Nb-doped Mg/Si does form the intermetallic (subgrain size ~ 250 nm)

- Average composition over scan axis:
 - 10 at % O
 - 62 at % Mg
 - 29 at % Si
 - Nb near detector limit
- Removing O → 68 at % Mg, 35 at % Si (ideal 66/33)
- Very close to Mg₂Si as expected and reported via XRD

EDS spectra obtained at points

Continued search and assessment of candidate metal-hydrides, as well as determining "best practice" for comparison to experiment and rapid design.

Focus efforts on most likely candidate systems with the goal of elucidating which defects and contaminants impact kinetics.

FY 06.

- Complete van't Hoff analysis for BH₄ systems. (with HRL, U.Pitt, CMU)
- Continue study of Ca 2CaH₂/CaB₆ (with SNL)
- Continue to assess effectiveness of ball milling strategies for Li/Mg/destabilized systems (with SNL)
- Maintain database of candidate systems and reactions. Expand use, scope, and vetting reliability. (with all partners)

FY 07

- Determine chemical and structural change occur during (de)hydriding cycles? (with SNL, HRL, U Hawaii)
- Structure and energy of combined magnesium / boro-hydrides. (with GE)
- Complete study of CaH₂/CaB₆ (with SNL)
- Structure and chemistry of contaminant layers on (de)hydriding cycle (U. Nevada)

Theory Tutorial to MHCoE: Capabilities and background of first-principles modeling to the experimentalists (*Aug. 17, 2005*).

- D.D. Johnson (UIUC) "Using DFT Methods: the good, bad and ugly"

Collaborative Visits/Talks:

- Duane Johnson (UIUC) talked at Pittsburgh (Nov. 16-17, 2005).
- S. Alapati (CMU) and R. Stumpf (SNLL): (Dec. 12-13, 2005)
- Craig Jensen 18-19 October 2005
- J.C. Zhao (GE) 18 April 2006.
- Christine Morales (U. Hawaii) Jan. 11-21 for modeling of defect barriers, and experiments with Lance Culnane (U. Hawaii). Feb. Apr.2006

Papers.

– Enthalpies of hydrogen storage complex-metal hydrides: calculated versus measured – submitted to Phys. Rev Lett.

 Combining Electron Energy Loss Spectroscopy and Energy Dispersive Spectroscopy for Identification of Catalytic Species in Hydrogen Storage Materials – Hydrogen Meeting, Hawaii 2006

 Calculating enthalpies of hydrogen storage complex-metal hydrides - Hydrogen Meeting, Hawaii 2006

- Demonstrated how theory can interface with experiment and improve understanding of assessed properties.
- Used experiment to improve understanding of and to assess processing strategies and reliability.