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OverviewOverview

Project start: Oct 2004
Project end: Sept 2008
40% Complete

Total project funding (expected)

DOE - $ 1,440 K
Contractor - $ 370 K

Funding received in FY05
$ 300  K

Funding for FY06 (to date)
$ 225  K

Timeline

Budget

Barriers & Targets
Barriers we are addressing:

A. System Weight and Volume
F. Lack of Understanding of 
Hydrogen Physisorption and 
Chemisorption
Q.  Reproducibility of 
Performance.

Targets: gravimetric and volumetric 
capacity, operability and cost.

Interactions/ collaborations:
Quantachrome, IPNS (Argonne), NIST



ObjectivesObjectives
Develop and demonstrate efficient, durable and reversible hydrogen storage in 
carbide-derived carbons (CDC) with tunable nanoporosity (2004-2005).

Determine the optimum pore size for hydrogen storage using experiment and 
theory (2005-2006). 

Identify post-processing strategies and catalytic additives which maximize the
performance of CDC-based hydrogen storage materials, using experiment and 
theory (2006-2007).

Finalize the design of a CDC-based H2 storage material that meets 2010 DOE 
performance targets and commercialize it (2007-2008).



ApproachApproach
Determine which 
parameters are 
important for H2
adsorption

Synthesize CDC   
with pore size 
optimized for high 
H2 adsorption

Increase the 
volume of 
optimally sized 
pores

Increase heat 
of adsorption 
for  storage at 
or near 300K

MCn + (1/2)Cl2 MCl(gas) + nC
M = metal or metalloid, C = carbide-derived carbon

2 nmSiC 2 nm

Carbide: Porosity = 0 % CDC: Porosity = 57 %

Cl2, F2 ,Br2, I2, 
HCl, HBr, HI, etc.
( 200  - 1200oC)

Over 30 different CDC materials    
synthesized and evaluated



Precise control over 
structure and pore size 
distribution by varying:

• rxn temperature
• precursor carbide
• synthesis environment
• post-treatments
Uniform pore size can 

be achieved, an important 
requirement for studying  
sorption fundamentals 
systematically. 

Free- standing monoliths 
can be processed for high 
volumetric capacity.

Economical: many 
precursors are cheap; 
simultaneous production of  
metal chlorides.

Unique features of CDC
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Ti3SiC2-CDC (1200oC): 
orthorhombic precursor, 
multiple C-C distances
correlate with broadbroad PSD

SiC-CDC (1200oC): 
cubic precursor, unique
C-C distance conduces 
to narrownarrow PSD 



Methods and Reproducibility

gas adsorption (Ar/CO2/N2/H2): 
specific surface area (SSA) & pore size 
small angle x-ray scattering (SAXS):  
pore size and total pore volume
local atomic structure from neutron pdf
prompt-gamma activation analysis     
(PGAA): impurities, doping concentrations
modeling
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 Autosorb-1, Drexel University, 
         Sample weight = 51.2 mg

 Nova, Quantachrome Corporation,
         Sample weight = 95.8 mg

 Quadrasorb, Quantachrome Corporation,
          Sample weight = 42 mg

H2 storage results reproduced using 
different instruments at Drexel, NIST, and 
Quantachrome, Inc.

Repeat identical syntheses give ± 5% 
variations in H2 capacity.
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Lacking direct probes of micropores, the agreement between 
two indirect methods gives added confidence in the results



Progress / ResultsProgress / Results
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Subnanometer pores are 
more efficient than large ones 
for H2 adsorption on carbon 
surfaces

Subnanometer pores are 
obtained from fcc TiC, ZrC.

SSA of ~2600 m2/g required 
for 6 wt% at 1 atm. and 77K.

Large pores decrease the      
volumetric capacity.

Annealing in hydrogen
(open symbols)  removes 
residual Cl2, increasing the 
pore volume available for 
storage.

HH22 uptake uptake at 1 atm, 77K

Y. Gogotsi et al. , J. Am. Chem. Soc, 127 (46): 16006-16007 (2005)  



Progress / ResultsProgress / Results

[1] J. Jagiello et al., J. Phy. Chem. B, in press (2006)
[2] Q. Wang et al., J. Chem. Phys. 110, 577-586 (1999)

Density of gaseous H2 in 
nano-pores can be higher 
than density of liquid H2

[1,2]

Extrapolation: CDC with 0.92 cm3/g pore 
volume (67% porosity) gives 4.5 wt.% H2
storage if all pores are < 1 nm, even at 
1 atm, where all the pores are not filled. 
Only ~0.6 cm3/g needed if all pores filled.

Capacity that could 
be obtained if H2 
filled all the sub-
nm pores
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Progress / ResultsProgress / Results
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Large pores are much less 
useful for H2 storage (they are not 
efficient in terms of surface 
coverage by H2 atoms; they also 
degrade volumetric capacity since 
adsorption is generally limited to a 
surface monolayer)

CDC with only modest SSA 
(< 1300 m2/g) but with small pores 
substantially outperformed others 
with SSA > 2300 m2/g but having 
wider pore size distribution (PSD).

No correlation

H2 uptake H2 uptake at 77K, 1 atm



Progress / ResultsProgress / Results
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Small pores increase the interaction 
with H2 (higher heat of adsorption) and 
thus result in higher H2 coverage of the 
sorbent surface

CDC demonstrates a stronger 
interaction with H2 than CNT or MOF 

H2 uptake H2 uptake at 1 atm



Progress / ResultsProgress / Results
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Heat of adsorption is independent of temperatureHeat of adsorption is independent of temperature

Since the heat of adsorption 
does not depend on 
temperature, values obtained 
from measurements at 77-87K 
and low pressure are valid at 
room temperature and elevated 
pressures.



Progress / ResultsProgress / Results
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Increased pore volume and smaller 

pore size needed to boost excess H2
capacity.

Small pores allow CDCs to achieve  
high uptake at moderate pressures

* Data assume material only 



Progress / ResultsProgress / Results
Comparison with advanced activated carbonsComparison with advanced activated carbons
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Filling all the pores 
with densely packed H2
is possible at high 
pressure (60 atm, 77K) 

Larger pore volume
Is required to increase 
gravimetric uptake.



Progress / ResultsProgress / Results
Volumetric HVolumetric H22 uptake of CDC at high pressureuptake of CDC at high pressure
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Ideal volumetric capacity of 

CDC approaches 2007 DOE 
target.

Possibility to produce CDC 
in monoliths with very small 
fraction of macropores gives it 
an advantage over other high 
SSA H2 storage media in 
terms of  volumetric 
performance  

Volumetric calculations assume a CDC 
density of 0.84 kg/L, corresponding to 
the carbon skeleton of cubic TiC with 
no macroscopic collapse (conformal 
reaction).  Intergranular voids in 
powdered materials are neglected.



Future WorkFuture Work
Increase volume of subnanometer pores to 0.9 cm3/g to achieve > 6 wt.% at 77 K 

and 40 atm or less, using conventional and novel activation techniques (12/2006).  
Increase average heat of adsorption to improve H2 storage at temperatures above 

77 K, and eventually RT.  
Set up theoretical models to predict doping candidates (60% done). 
Synthesize doped CDC and CDC containing catalyst particles for further improved 

H2 uptake (03/2007).
Synthesize gram quantities of selected CDCs for round-robin testing and 

evaluation (09/2006) - fluidized bed reactor (2-20 g/run) designed and under test. 
Understand in detail, from theory and experiment, the hydrogen-carbon interaction 

(09/2007).
First-principles molecular dynamics simulations to guide improved storage 

dynamics (09/2007).
Achieve commercialization and scale-up; seek commercial partner (09/2008).



Near termNear term
Push towards 300K operation by increasing the heat of adsorption. We will exploit 

unique metal-hydrogen interactions in a structurally-optimized system.  So far, theory and 
modeling of Ti dopants on nanotube and C60 surfaces (Yildirim) show that these structures are 
too open to avoid metal segregation.  On the other hand, CDC with the right pore volume and 
PSD should be perfect for doping with light transition metals;  pores in CDC are zero-D, so Ti 
can’t migrate from pore to pore.

Develop post-processing strategies to improve utilization of total pore volume for 
hydrogen storage.  First success – annealing in H2 to clean out residual Cl2.  Develop new 
approaches to remove amorphous carbon blocking pores and create additional small pores.

Direct measurements of gravimetric capacity on pelletized CDC powders.  Find critical 
density at which we start losing capacity due to pore collapse, impeded diffusion and/or 
prohibitively slow sorption/desorption kinetics.

New theoretical approaches to treat noncrystalline systems – direct visualization of 
carbon collapse inside “vacated” carbide to create pore structure; correlation of pore 
size/shape with precursor crystal symmetry.

Reverse Monte Carlo analysis of neutron scattering, to help identify pore size and shape.



SummarySummary

Relevance: Adsorption of H2 in porous carbon was evaluated. Parameters governing 
adsorption investigated.

Approach: A family of novel carbon materials with controllable porosity and 
microstructure (CDC) synthesized. 

Technical Accomplishments and Progress: Excess H2 adsorption over 4.3 wt.% and 
0.034 kg (H2)/L was demonstrated in CDC @ (77K, 55 atm). Max heat of H2 adsorption 
up to 11 kJ/mol (with average values ~ 8 kJ/mol) demonstrated. 

Proposed Future Research: Further modification of CDC porosity, microstructure 
and chemistry for improved H2 uptake. 

Prof. John E. Fischer
fischer@seas.upenn.edu

(215) 898-6924

mailto:fischer@seas.upenn.edu
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Gogotsi, Spring MRS Symposium, San Francisco 4/2006.
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interactions), Maui (October 1-4, 2006).

Publications and PresentationsPublications and Presentations



Distribution of effortDistribution of effort
University of Pennsylvania
Small angle X-ray scattering (SAXS)
Transmission electron microscopy (TEM)
Pore volume / pore size design
Post-synthesis activation, doping

Drexel University
Material synthesis
Structural characterization (Raman spectroscopy, X-ray diffraction)
Porosity analysis using gas sorption technique
Low pressure (1 atm) hydrogen storage measurements

NIST
High pressure hydrogen storage measurements
Neutron scattering studies
Simulations using density functional tight binding (DFTB) method 



Critical Assumptions and Issues
• Achieve gravimetric capacity requirements. We assume this can be done 

by enhancements in pore volume.  Same applies to MOFs and other 
cryosorbers.  Other solutions outside the scope of our project are to use 
chemical storage methods, e.g. alanates.

• Achieve volumetric requirements.  We assume this can be done by 
optimizing PSD.  MOFs suffer more from this issue than do the various 
carbons.  Chemical storage materials will have no problem meeting 
volumetric requirements.

• Achieve storage at modest temperatures and pressures, with no 
significant thermal load on the system.  We assume we can accomplish 
this by enhancing the heat of adsorption and optimizing PSD.  MOF’s with 
bigger pores will always require high pressures.  Chemical storage 
methods all require cooling to dissipate heats of decomposition when the 
hydrogen is released.

21
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