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Overview

Project start date FY05
Project end date FY10
~20% complete

Technical Barriers-
Hydrogen Storage

B. Weight and Volume
C. Efficiency
E. Refueling time
M. Hydrogen Capacity 

and Reversibility
O. Test Protocols
Q. Thermal Management

Total project $3,948,220
– DOE share $3,158,575 (80%)

FY05 funding $300,000
FY06 funding $475,000

Timeline

Budget

Barriers

Current interactions:  NREL, ORNL, Penn State
Anticipated collaborations:  Rice University, Duke University, 
University of North Carolina

Partners
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Approach:  How can we enable discovery of 
materials with a suitable heat of H2 adsorption?

Rapid, inexpensive measurement techniques – accelerated 
materials/process development towards meeting DOE 
system targets for hydrogen storage

– Sorption capsule technique
Accurate measurement techniques – provide critical 
guidance to center partners that enables new materials 
development

– Differential pressure adsorption
– Correction for helium adsorption effects on H2 isotherms

General quantitative computational models for new 
materials– efficient materials discovery/optimization towards 
meeting DOE system targets for hydrogen storage

– Realize more practical overlap between computational 
and experimental work (eg. modeling excess 
adsorption)

– Predictive modeling of new types of materials
– Optimization of existing materials
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Technical accomplishments:  
sorption capsule technique

Potentially useful for rapid 
screening of total 
hydrogen storage (excess 
hydrogen + gaseous 
hydrogen)
Also can be used to 
measure isotherms if 
“free space” is 
determined by He 
expansions
Very inexpensive 
equipment needed for 
implementation

A hydrogen storage measurement technique that 
could accelerate new materials development
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Technical accomplishments:  H2 isotherms on GX-31 activated 
carbon at 25oC by three independent methods including the 

capsule technique

Capsule technique validated and 
representative limit of operation 

established

curve: 1.2 mg excess H2/g 
sorbent for 1.7 g sample



6

Activation and adsorption characterization of carbon-
based materials:  “Tailoring” singlewalled carbon 

nanotubes for hydrogen storage

Laser light scattering profile 
of SWNT samples before 

(dotted line) and after (solid 
line) a non-destructive cutting 

procedure

Transmission 
Electron 

Microscopy
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Technical accomplishments:  Hydrogen capacity at 
25oC and 107 bar as a function of N2 BET surface area

Heat of adsorption of carbon nanotubes is higher than activated 
carbon – more substantial hydrogen adsorption at ambient 
temperature is important for meeting DOE system targets
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Technical accomplishments:  Hydrogen isotherms on 
singlewalled carbon nanotubes and isosteric heat of 

adsorption

0 
oC25 oC

50 oC

Heat of adsorption is higher than activated carbon – but 
still not high enough for substantial capacity at near-
ambient temperature from physical adsorption alone
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Technical accomplishments:  A new approach 
for modeling Gibbs excess adsorption

Adsorption strength 
and capacity are 
distance-dependent
Distance-dependent 
adsorption energy 
and effective 
capacity can be 
expressed in terms 
of minimum distance 
distribution function

r
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Application of approach to H2
Adsorption in SWNT bundles:  

Objectives and method
Understand the difference between homogeneous and 
inhomogeneous SWNT bundles for H2 adsorption
Understand the effects of nanotube bundle thickness

Molecular dynamics simulation with a curvature-dependent 
force field (Physical Review Letters, 89 146105, 2002)
Simulation time: 50 picoseconds
Room temperature (300 K)

Finite SWNT bundles represent an excellent hydrogen 
storage material model for testing our new 

computational methods – our ultimate goal is to enable 
predictive computational modeling of new materials 

that can meet DOE system targets
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Technical accomplishments:  adsorption density maps

Seven (9,9) 
homogeneous 
SWNT in bundle 

Nanotube diameter: 
12.2Å

Seven 
inhomogeneous 
SWNT in bundle

Average nanotube 
diameter: 12.2Å

H2 + CH3.HOMO

LUMO

More H2 molecules are adsorbed within close proximity of 
inhomogeneous nanotube bundles  
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r-Dependent Adsorption Energy vs. Capacity

Homogeneous
7 tube bundle
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Comparison of Homogeneous and 
Inhomogeneous SWNT Bundles

Stronger adsorption in inhomogeneous SWNT bundle
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Ab initio molecular dynamics simulation at room 
temperature for 5 picoseconds, interaction forces 
calculated with local density functional theory

Unit Cell: CxY64-x •4H2
(Y=B,C,N)
Optimized inter-sheet 
Distance:
C64 • 4 H2:        4.87Å  
C48B16• 4 H2 :   5.10Å
C48N16 • 4 H2 :  4.64Å

Predictive computational modeling of new materials 
with potential for higher heats of adsorption:  boron 

and nitrogen substituted graphite

Our computational methods and materials are complementary to 
other CoE partner efforts (PSU, NREL, Rice)
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Molecular dynamics: H2 in graphite at 77K

Unit Cell: C64•32H2

Inter-sheet distance:  4.914Å

The calculated H2 adsorption 
energy: -4.39kJ/mol H2, is in 
good agreement with 
experimental values for heat of 
adsorption of hydrogen on 
graphite (ca. 4 kJ/mol H2)

A successful test of our computational methods on a 
known system before beginning predictive modeling of 

new boron or nitrogen-containing materials
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Technical accomplishments:  Ab initio
molecular dynamics simulations

C64 • 4 H2 C48B16• 4 H2 C48N16 • 4 H2

∆H (kJ/mol H2) no binding -17.8 no binding

C64• 4H2
C48B16• 4H2
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Technical accomplishments:  Radial distribution functions 
from ab initio molecular dynamics simulations of hydrogen 

adsorption on boron containing carbon (C48B16)

∠BCB ~ 105o – 115o

These boron-containing carbons have a substantially stronger 
interaction with hydrogen than the pure carbon analog
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Summary
We have developed new computational methods for hydrogen 
storage material discovery

– The methods enable predictive modeling of hydrogen 
adsorption in carbon-based materials

– The methods provide a more accurate model of the H2
adsorption energies than previous methods

We have established the accuracy of our high pressure 
isotherm measurements

– Our expertise and equipment time has been made 
available to all interested CbHS center partners

We have invented a new hydrogen storage materials 
measurement method

– This method is designed to allow rapid screening of new 
materials (physisorption and/or chemisorption)

– The details on design and operation have been transferred 
to interested CoE partners for potential implementation in 
their labs to accelerate new hydrogen storage materials 
discovery
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Future Work
Application of computational methods to new materials of 
interest to CbHS partners

– Ab initio molecular dynamics study on hydrogen spillover 
mechanism (potential >7 wt. % hydrogen storage)

Increased collaboration with partners on accurate hydrogen 
adsorption measurements

– Investigate extending our capability from near-ambient 
temperatures to cryogenic temperatures (eg. >7 wt. % 
hydrogen storage in literature using MOF)

– Complete development of high temperature pycnometer
for correction of helium adsorption effects on hydrogen 
isotherms (preliminary – up to 25% change in measured 
capacity)

Initiate experimental program in FY06 on new hydrogen 
storage materials

– Resource dependent
– Collaborations expected (eg. on B, N-containing carbon 

materials)



20

Back-up Slides (not presented 
or for reference)
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– “Advanced Hydrogen Sorption Measurement Techniques:  
Application to Tailored Singlewalled Carbon Nanotubes”:  
Materials Research Society Fall Meeting, 11/05, Invited 
Presentation

– “Enabling Discovery of Materials With Higher Heat of 
Adsorption”:  FreedomCAR tech team review meeting 3/06
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Critical Assumptions and Issues
Hydrogen storage materials will be discovered that have an 
adequate heat of adsorption to significantly improve the 
volumetric efficiency of hydrogen storage systems at near-
ambient temperatures

– This will require higher heats of adsorption than known 
hydrogen storage materials

– We have observed that modification of known materials (eg. 
boron-substituted graphite) can have profound effects on 
the heat of adsorption

A working hydrogen storage system prototype can be designed 
and constructed that achieves necessary gravimetric and 
volumetric hydrogen storage densities

– This will require discovery of a new material with high 
hydrogen storage capacity under practical operating 
conditions of pressure and temperature

– However, also required is an efficient thermal management 
system to allow rapid charging and discharging

– Some engineering principles from existing metal hydride 
hydrogen storage systems may be transferable



24

Reference:  Differential Pressure Adsorption 
Unit (DPAU)
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Differential pressure measurement 
unaffected by lab temperature variation

P = 68.9 bar
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Hydrogen Isotherm on GX31 Activated Carbon: 
Benchmarking DPAU against Gravimetric Data

T = 25oC

We have successfully measured near-ambient temperature 
isotherms on carbon samples as small as <60 mg
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Reference:  Gibbs Excess Adsorption
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Reference:  Adsorption Capacity
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Reference:  Adsorption Energy
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Reference:  H2 Interaction Energy vs. 
Distance from Adsorbent (ε’)
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