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Overview

• Project start: 2/1/05
• Project end:  1/31/10
• % complete:  20%
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Barriers addressed
A: System Wt & Vol: Hydrogen volumetric (1.5 

kWh/L) and gravimetric (6wt%) storage density 
goals for 2010

B: System Cost: High-volume low-cost synthesis 
routes (via pyrolysis, arc)

C: Energy Efficiency: Low pressure, moderate 
temperature operation (via enhanced binding 
energy through chemical modification)

E: Charge/discharge rate: via Mixed 
micro/mesopore structures through precursor 
design 

J: Thermal management: via designed moderate 
binding energies of mixed physi/chemi-sorption

P: Improved understanding: via calculations in 
close coupling with fundamental measurements 
on well-characterized, well-ordered systems

R: Reproducibility: PC-based differential 
volumetric apparatus

• Total project funding
– DOE share: $1.2M
– Contractor share: $0.3M

• FY05   $ 150,000
• FY06   $ 225,000

Timeline

Budget

• Dispersed throughout CbHS:NIST (neutron), NREL (TPD), Air Products (vol. ads.)
• S. Bandow & S. Iijima (Nagoya U)
• M Dresselhaus (MIT)
• Carbolex, Inc

Partners



Objectives / Approach (I)
• Advanced Hydrogen Phys/Chem-isorption Materials

– Reversible, low mass density, low volume, good thermodynamics
– Materials Goal: Reversible storage of ~6wt% at 200K, 100 atm by 2008.

• High SSA Carbons as the Launching Platform
– Many precedents for high surface area sp2 bonded carbons
– Chemically modify carbon framework for enhanced H2 binding energy
– Use this platform to atomically disperse H-active metals

• Boron-substitution to enhance binding energy of hydrogen
– Boron is the only element known to substitute in the sp2 framework without 

serious structural distortions.. Must maintain high Specific Surface Area 
(SSA) 

– Boron is a light element.. We need large gravimetric storage 
– Shake up the Chemistry of the Carbon Framework with Boron

• Load Boron as high as BC3 to create an electron-deficient framework

• Atomically dispersed metal atoms to further enhance binding
– We predict boron stabilizes atomic dispersion of  metal atoms
– Metal atoms supported on top of high SSA framework
– Bi-functional H-storage: Metal atoms available for multi-center H2 coupling& 

chemisorption via M-H bonds
3



B=Boron M=Metal
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Boron and metal modifications of the carbon framework show promise 
to raise the binding energy of H2 into the range necessary to meet DOE 
wt%, volumetric, pressure and cost targets for 2010 and beyond.

Substituted Boron 
stabilizes Atomic Metal

Substituted Boron 
Enhances H2 Binding

-M-

Objectives / Approach (II)

~0.08 eV

>0.11 eV

~0.3 eV

~0.2 eV

Schematic of sp2 carbon network and sites for binding atomic and molecular hydrogen



deposition 
energy per 
metal atom 

[eV]

BC7 BC3 B3C5C

1eV/atom = 
100 kJ/mol
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Accomplishment: Calculations demonstrate that boron 
incorporation stabilizes many metals atomically dispersed, and 
so defines a highly promising synthetic target for 
physical/chemical binding of hydrogen V. Crespi and R. Huang, in prep.



Calculated Hydrogen Interaction with Dispersed Metals

1.7 eV per 2H’s

Ti

0.4 eV per H2

Pd

Mg

1eV/atom = 
100 kJ/mol
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Accomplishment: Calculations demonstrate that metal-boron-carbon systems 
can bind hydrogen at intermediate energies between physical and chemical 
adsorption, the “sweet spot” to obtain reversible storage at >5wt% and 
>45 g/L.



Three complementary approaches to materials 
synthesis of metal dispersed B-substituted carbons
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• Electric arc vaporization from M-B-C Electrodes (Eklund)
– Non-equilibrium high-energy conditions
– Accomplishment: Production of highly ordered uniform high SSA B-

doped carbon nanotubes with boron doping up to 3%. Neutron 
scattering reveals higher-binding energy sites for H2 near boron

• B-Containing Molecules / Pyrolysis (Chung)
– Ability to design precursors with exceptionally high boron concentrations
– Accomplishment: 5-10 atomic% boron incorporation into sp2 carbon 

frameworks. Preliminary data show the first substantial (0.6-1wt%) 
binding of hydrogen to a boron-carbon material at room temperature and 
low pressure in the initial unoptimized batches of material.

• Molecular Reaction / Pyrolysis (Foley)
– Combinations of precursors to control complex pyrolitic decomposition
– Accomplishment: Synthesis of highly porous materials with a 

controlled mixture of micropores (for large storage) and mesopores (for 
rapid transport)

H. Foley, M Chung, P.C. Eklund, et al.



Accomplishment: Arc synthesis of kg quantities of high-quality, porous 
nanotubes as a framework for chemical modification to enhance hydrogen 
binding in a well-controlled system

•Fully automatic Arc;  no 
operator necessary

• 100 grams SWNT soot 
in ~2 hours

• Post synthesis 
purification by selective 
oxidation and  acid reflux 
for high-quality materials

www.carbolex.com

SWNT Research Chamber at CarboLex-Broomall(PA) facility 8
B-SWNTs provided courtesy of CarboLex, Inc.



Accomplishment: B-C molecular precursors have been implemented which 
pyrolyze into sp2 carbons with high (5-10at%) boron.

B

Cl

Cl

C     C B
Cl

Cl

C     C B
Cl

Cl

CBF

DCBPA

DCBCS

pyrolysis

> 800 oC
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Mike Chung et al.

Built-in reactive B-Cl bonds reactive are designed reactions that retain 
boron in the final structure. A simple scalable process that can produce 
large amounts of material at low cost.
Mixtures of precursors, some B-containing, some designed to generate 
mesopores that improve transport of gas into and out of system. 



HRTEM Image of Purified, 
Bundled B-SWNTs

Pure carbon tubes with roughened surfaces 
store 6wt% hydrogen at 77K and low 
pressure (JMR ’04). These new boron-
doped tubes show enhanced binding 
energy as compared to pure carbon tubes: 
they point toward a pathway for reversible 
room-temperature storage at moderate 
pressures to meet the 2010 goals, if 
sufficient boron can be incorporated.

Bundle end 
view

Accomplishment: HRTEM of purified B-doped SWNTs reveals high 
structural quality and high porosity. Raman, optical absorption and 
neutron demonstrate that boron substitutes into the carbon 
framework, as desired.
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Boron is in the tube wall: Evidence
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2nd order

The Boron disrupts the translational symmetry of the 
SWNT…this leads to disorder-induced (D-band) 
scattering.  Annealing at 1000 C does not remove 
the D-bands => scattering is NOT from wall defects

The absorption band above is due to 
transitions across the semi-conducting 
bandgap of the SWNTs.  Note that the 
peak up-shifts with boron at%. The width 
is a measure of the diameter distribution.
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X.M. Liu,…, P.Eklund, in prep.



Accomplishment: Inelastic neutron scattering* of H2 rotational 
transitions reveals 15% higher H2 binding to the boron site
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*Craig Brown, Dan Neumann and Yun Liu at the NCNR.



Rotational H2 Spectra vs Temperature
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~ 1% B-doped SWNTs

At high temperatures, 
only the hydrogen 
bound to boron sites 
survives, demonstrating  
higher binding through 
boron substitution.
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D.Narehood, P.C. Eklund, Dan Neumann, Craig Brown, Yun Liu,  in prep.



Summary: Effect of B-Substitution

• Inelastic neutron scattering shows clear increase in temperature
which the hydrogen becomes mobile on the carbon framework 
and an increase binding energy while maintaining high surface 
area. 

• Calculations show that higher boron at% in higher-curvature 
bonding geometries have intermediate physical-chemical 
adsorption (~0.3 eV/atom). The binding of H2 to boron sites 
increases a further 40% when the host sp2 sheet is deformed, 
substantially raising the uptake/release temperature.
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D.Narehood, P.C. Eklund, Dan Neumann, Craig Brown, Yun Liu,  in prep.



Future Work FY06
• Remaining FY06

– Begin in-depth volumetric studies of H-storage capacity of B-
substituted carbons. Verify and extend observed enhancements in 
wt% storage capacity and binding energy towards 2010 targets of 
6wt% and 45 g/L.  We have already observed 6wt% at 77K and 20 
atm in surface-roughened nanotube systems (without boron).

• Use PC-controlled differential  volumetric apparatus designed and 
built at PSU by P. Eklund/A. Lueking

• Companion measurements  made at AirProducts (A. Cooper)
– Continue development of potential high-impact Boron-Carbons 

that maintain High SSA with high B-loading 
– Determine the effectiveness of stored electrochemical charge as a 

simple screening technique for H-storage materials: tracks same 
physical properties of accessible surface area and also depends 
upon electronic characteristics of the surface which may correlate 
to enhanced hydrogen binding
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Future Work FY07
• Develop synthesis protocols for metal dispersion 

onto Boro-Carbon platforms to further increase 
binding energy and raise the operating temperature.
– Investigate bi-functional (atomic & molecular) H-storage and 

determine (T,P) needed for 6 wt% reversible H and H2 storage
• Push B/C ratio to 5-20% to increase wt% and 

volumetric storage capacity at high temperatures
– Via B-containing Monomers and Polymers (c.f., FY06) and 

through C-defect formation and B-replacement

• Synthesis, H-storage, and design/modeling in 
continual developmental feedback loop

16



Summary Table 1eV/atom = 100 kJ/mol

Wt% H Binding energy Temperature Pressure

Roughened carbon 
nanotubes (JMR, ’04)

6%
0.3%

~0.13 eV 77K
300K

5 atm
20 atm

Boron-doped 
nanotubes

TBD ~0.15 eV TBD TBD

Boron-doped 
pyrolytic carbon

0.6-1.0% TBD 300K 20 atm

Boron in highly 
curved carbon sheets 
& dispersed metal 
sites (calculation)

>5% 0.3 to 0.8 eV 300K 1-10 atm
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This new class of boro-carbon materials is being optimized to meet the 2010 goals 
with higher boron concentrations, greater surface areas, and metal dispersion for bi-
functional (physical/chemical) adsorption & storage. Our intent is to “change the game”.



Summary: Penn State Effort
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• Relevance: Increase reversible hydrogen BE by developing new storage materials 
through chemical modification of carbon frameworks. 

• Approach: Three complementary synthesis techniques closely coupled to 
adsorbtion measurements and first-principles materials theory.

• Technical accomplishments:
– All three Penn State synthesis routes are producing boron-substituted sp2 carbons. 
– B-SWNTs produce enhanced H2 binding (∆ BE ~ 15% ). 
– Porous materials derived from pyrolysis of B-containing polymers show substantial 

physisorption at room temperature. 
– Theoretical calculations have demonstrated that Boron stabilizes atomically 

dispersed metals on the sp2 carbon framework and that curvature of the framework 
improves H2 binding to B substitutional sites, to the levels required by 2010 goals.

• Collaborations: NIST, AirProducts, NREL, Carbolex
• Next six months:

– Drive up B-content and SSA; begin in-depth H2 adsorption-desorption studies
– Measure BE enhancement vs sample morphology
– Begin preliminary light metal element dispersion in B-substituted Carbons
– Continue theoretical modeling in metal-dispersed B-substituted Carbons, 

emphasizing light element metals to meet gravimetric goals

Vin Crespi, Mike Chung, P.C. Eklund, Hank Foley, et al. ( Penn State )



ADDITIONAL SLIDES



Publications and Presentations

• Molecular hydrogen adsorption on the boron-doped graphene sheet 
in presence of magnesium and transition metal, Z. Huang and V 
Crespi, Bull. Am. Phys. Soc. (Baltimore, 2006).

• Inelastic Neutron Scattering from H2 in B-doped SWNTs, D. 
Narehood, D. Neumann, C. Brown, Y. Liu, P. Eklund; Bull. Am. 
Phys. Soc. (Baltimore, 2006).

• Carbon Nanotube Technology, P. C. Eklund; NSF-sponsored US-
China Nanotechnology Workshop, Arlington, VA (Mar 22-5, ’06).

• Enhanced Binding Energy Sites for H2 associated with Substituted 
Boron in Single-Walled Carbon Nanotubes, Y. Liu, C. Brown, D. 
Neumann, D. Narehood and P.C. Eklund;  NanoLetters (submitted).

• Electric Arc Production of Boron-Substituted Single-Walled Carbon 
Nanotubes, X.M. Liu, D. Narehood, Y. Liu, C. Brown, D. Neumann 
and P.C. Eklund, J. Matter. Res. (submitted).
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Critical Assumptions and Issues
• Challenges: How high of a substitutional B 

concentration can be obtained while maintaining a high 
surface area? Can metals be stably dispersed at an 
atomic or near-atomic level through the creation of an 
electron deficient sp2 carbon framework?

• Responses: Introduce metals in elemental or chemical 
form as precursors during synthesis or post-synthesis via 
vapor or electrochemical deposition. Exploit synergistic 
metal/boron-in-carbon interactions to increase 
concentrations of both within the carbon framework. 
Exploit kinetics-driven synthesis conditions to widen 
compositional palette.
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Observations that inform the design and search 
strategy

MgH2Graphene

MgB2BC3

too strong?too weak?

< 0.1 eV

~0.2 - 0.7 eV

1eV/atom = 
100 kJ/mol

22Boron/metal materials can hit the sweet spot



Calculation demonstrates that boron disperses in a carbon 
host
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binding 
energy 
per 
atom 
[eV]

BC7

BC3

B3C5

Density functional calculations demonstrate that boron 
disperses atomically in a carbon framework, a requirement for 
improving wt% and volumetric hydrogen storage.V. Crespi and R. Huang, in prep.



Ti on pure graphene Ti on BC3

2.5 eV per Ti 
binding

4.6 eV per Ti binding
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Accomplishment: Boron greatly stabilizes 
the atomic dispersion of metals on 
boron-carbon sheets; this is a new 
material which can bind H at 0.2-0.8 
eV/H-atom, sufficient to meet 2010 
targets at moderate pressures

V. Crespi and R. Huang, in prep.

B
B

C
C

C

Ti

Charge transfer 
from metal to B/C



Molecular Reaction / Pyrolysis route to high SSA boro-carbons
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• Accomplishments:
– BET surface area > 1000m2/g.
– B:C~1:200 (by XPS)
– Mixture of micropores for 

storage and a small 
subpopulation of mesopores
for rapid uptake and release.

• BET surface area 
0.5m2/g.

• B:C 1:50 (by XPS))

Scheme 1 Scheme 2

TEAB add in 
FA/PFA mixture

Pyrolyze at 
800ºC

FA add in p-TSA/THF solution

Pyrolyze at 800ºC

Activate with CO2

Polymerize for 1 day

Add TEAB

Polymerize for another day

Add PEG600 diacid
Stir overnight

Stir well

Scheme 1 Scheme 2

TEAB add in 
FA/PFA mixture

Pyrolyze at 
800ºC

FA add in p-TSA/THF solution

Pyrolyze at 800ºC

Activate with CO2

Polymerize for 1 day

Add TEAB

Polymerize for another day

Add PEG600 diacid
Stir overnight

Stir well

XPS spectra demonstrate boron incorporation 25
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