

Development of an Advanced Chemical Hydrogen Storage and Generation System

- Participants in the Chemical Hydrogen Storage Center of Excellence -

Xiaolei Sun, Jeffrey V. Ortega, Qinglin Zhang, Michael T. Kelly, Todd Randall, Ying Wu (P.I.) Millennium Cell Inc. 1 Industrial Way West, Eatontown, NJ 07724

DOE Annual Program Review Washington, D.C., May 16-19, 2006 Project ID #: ST 7 Contract #: DE-FC36-05GO15056

This presentation does not contain any proprietary or confidential information

Overview

Timeline	Barriers			
 Project start date: February 2005 Project end date: February 2010 Percent complete: 20% 	Weight and VoEfficiencyHeat removal	olume		
Budget	Project Targets			
 Total project funding (5 Year) DOE share: \$2.4 million (80%) MCEL share: \$0.6 million (20%) Funding received for FY05: \$200 K 		2005	2006	2007
	System volumetric capacity (kWh/L)	1.0	1.1	1.2
	System wt%	3.9	4.2	4.5
	Partners			
Funding for FY06:\$400 K requested	Center of Excellence – Chem. H_2 Storage PNNL – System modeling and eng.			

RandH, PSU, LANL – Regeneration

• \$250 K obligated

Objectives

Overall:

- To Improve capability to store and release H₂ from chemical hydride
- To Meet DOE 2007 target and beyond:
 - 1.2 kWh/L (36 g H $_{\rm 2}/L)$ and 1.5 kWh/kg (45 g H $_{\rm 2}/kg).$
- To leverage MCEL engineering expertise and guide Center research

Last Year:

- Data mining on the synthesis and regeneration of $B-O \rightarrow B-H$.
- Rapid screening of options
- Initiate system analysis and reactor module development.

This Year:

- Develop modeling tool for hydrogen generation reactor
- Validate modeling results with experimental data
- Conceptual design based on modeling
- Maintain progress to meet DOE go/no-go decision on SBH

Status at Start of Project

Hydrogen Generation System Metrics

Criteria	2007	2010	MCEL current	MCEL target for Phase I
Specific energy	4.5 wt% 1.5 kWh/kg	6 wt% 2.0 kWh/kg	3.9 wt%	4.5 wt%
Flow rate	0.02	0.02	0.02	
Density	36 g/L (1.2 kWh/L)	45 g/L (1.5 kWh/L)	33 g/L (1.0 kWh/L)	36 g/L (1.2 kWh/L)
Storage system cost	\$6 /kg H ₂ stored	\$4 /kg H ₂ stored	\$ 6.7 /kg H ₂ stored	\$ 6 /kg H ₂ stored

Accomplishments to Date

- Reactor modeling activity started and progressing well
 - Developed reactor packing sub-module
 - Completed Lattice Boltzmann microscopic modeling of reactant flow in the reactor
 - Established macroscopic reactor model that matches the experimentally observed parameters
- Generated experimental data to validate modeling results.
- Started to use the model to predict performance parameters
- Begin to build the experience and modeling tool that can be applied to other chemical hydrogen storage systems

Improve System Level Storage Capacity

Reduce Fuel Volume

- Increase fuel concentration
- Improve catalyst's ability to process concentrated fuel
- Volume exchange tank design

Reduce Volume of Balance of Plant (BOP)

- Relationship between reactor liquid hold-up and size of ballast
- Manage heat exchange size of exchanger
- Improve gas-liquid separation size of separator

System Development Approach Millennium Using NaBH₄ as Example

CFD	Reactor Modeling	Conceptual Design	System Design
Oct. – Dec. 05	Jan Aug. 06	Sept. 06 - Sept 07	Oct. 07 –Sept. 08
 Develop modeling tools 	PNNL Collaboration	09/30/0)7
 Lattice 	• Optimize		 Sub-system testing
Boltzmann calculations	oltzmann Conversion alculations	• Reactor features	 BOP testing
 Macroscopic modeling 	dimensions	• BOP designs	 System testing
 Star-CD data 	 Increase throughput 	Safety evaluation	 Prototype Demo:
 Fluid dynamics Validate model 		Go/no-go Decision	> 45 g H ₂ /kg > 36 g H ₂ /L

Develop "Tool Box" applicable to other chemical hydrogen storage systems

- Means to handle microscopic reaction basics
- Means to handle multi-phase reactions
- Means to incorporate thermodynamic and kinetic data
- Means to apply to other chemical hydride systems

Reactor for H₂ Generation

Preliminary Modeling

- 10 x 100 segmentation of reactor simplifies overall heterogeneous microscopic properties into 1,000 individual homogeneous sections
- Solves the flow, energy and species transport equations for multiphase flow through a catalyst bed reactor
- Two-dimensional (axial and radial) finitevolume formulation
- Transient solution to reach a steady state

Technical Accomplishments STAR-CD Data Process

- CFD reactor modeling program
- Commercially available from CD-adapco
- Customized subroutines for specific reactions (PNNL/MCEL)
 - Utilizes code from Fortran method
- Powerfully post-processing functions
- Complex to use for modeling heterogeneous catalytic surface reactions

Reactor Geometry

Streamlines

High Velocity Regions

Technical Accomplishments Lattice-Boltzmann Modeling (PNNL)

- Microscopic discreet modeling
 - Detailed nodes model separate solid, liquid, and gas regions/interfaces
 - Determine transport and reaction parameters for use in macroscopic model
- Advantage includes effect of catalyst geometry, less empiricism

Process Design Implication

- Need efficient gas separation mechanism
- Design of catalyst

Example Data

Radial slices at different lengths along the reactor

- (Red) Liquid phase
 - (Dark Blue) Solid phase
 - (Light Blue) Gas phase

"Gas Shielding"

12

Technical Accomplishments

Macroscopic Reactor Modeling

Validation parameters

- SBH conversion
- Axial reactor temperature
- Overall reactor pressure drop
- Hydrogen flow rate

<u>Simulation</u>

- NaBO₂ liquid flow
 - (NaBO₂ concentration)
- Water vapor flow
- Hydrogen distribution
- Void fraction

Optimization

- Fuel space velocity
 - (flow rate)
- Reactor parameters
 - Total volume
 - D/L ratio
 - Geometry
 - Pressure
- Heat removal
- Fuel concentration
- Catalyst packing density

Validating the Model:

- Pressure Drop and Reactor Temperature

- Pressure drop is affected by catalyst porosity & packing density
- Temperature profile varies with:
 - system pressure; space velocity,
 - fuel concentration; water vaporization
- Simulated parameters match experimental measurements

SBH % Conversion

H₂ Flow Rate

$$-rA = k_0 e^{-Ea/RT} \left[BH_4\right]$$

Accuracy of model generated conversion profile relies on the accuracy of kinetics equations describing the reactions

Simulated Results: - "NaBO₂" Concentrations

- High NaBH₄ concentration can result in NaBO₂ concentrations that exceed the solubility limits
- Super-saturation has been observed experimentally
- Active management of reactor temperature (via reactor pressure) can mitigate the problem of borate precipitation

Solubility Table			
Temp.	NaBO ₂ wt%		
0°C	14.50		
10°C	17.0		
20°C	20.0		
30°C	23.6		
40°C	27.9		
50°C	34.1		
60°C	38.3		
70°C	40.7		
80°C	43.7		
90°C	47.4		
100°C	52.4		

Simulated Parameters: - Flow of Water Vapor

Profile of Vapor Phase Water Flow

- High press. and low temp.
 → low H₂O vapor pressure
- Low gas volume → low void space → better contact between reactants and catalyst
- Liquid water is favored to solubilize borate byproduct.

Optimization Using the Model - Effect of System Pressure

Millennium Cell The Hydrogen Battery Technology Company

NaBH₄ Conversion Profile At Various Reactor Pressures

0.48 min⁻¹ for 20 wt.% SBH

- Simulation provides additional insight within the reactor
- System pressure governs peak temperature in the reactor
- High system pressure is favored to increase SBH conversion

Will Affect BOP

Optimization Using the Model: - Effect of Fuel Space Velocity

- Increase in fuel space velocity reduces NaBH₄ conversion
- Space velocity also affects reactor temperature

Millennium

The Hydrogen Batte Technology Compar

Comparison to Experimental Data

Experimental data confirms that high reactor pressure will allow more rapid processing of fuel

Main Observations

- 1. Modeling Method has been validated as a tool to simulate and predict the experimental results.
- 2. Reaction Kinetics is critically important to establishing the validity of the model.
- **3. Validation**: Steady state profiles of temperature, NaBH₄ concentration, pressure drop, and H₂ flow rate correspond to experimental data.
- **4. Simulation:** Effects of fuel flow rate, fuel concentration, and system pressure were determined.
- **5. Design Optimization**: reactor geometry, catalyst porosity, active control of pressure and temperature will have strong influence on the simulation results.
- 6. Benefits: Initial simulation results already generated additional insights to be used to optimize system design and operation.

Future Work

<u>FY06</u>

Complete reactor simulations

- Improve accuracy of reaction rate equation
- Use Star-CD program to improve visualization of simulation results
- Optimize operational parameters
- Initiate reactor design

<u>FY07</u>

- Complete reactor design
 - Optimize performance and parameters
- Develop other sub-modules in BOP of system
 - Use optimization results to guide H₂ generation system development
 - Evaluate possible system performance against FY07 DOE targets

Safety evaluation

- Individual sub-module components
- Overall System

Storage Capacity Progress Towards DOE Targets

Summary

Center Collaboration:

- Collaboration with PNNL has been very productive
- Insightful information has been generated from the modeling activities in a short period of time
- Microscopic and Macroscopic level modeling tools being developed for use with additional chemical hydrogen storage systems

System Development:

- Developed accurate tool/method that will be utilized to generate an optimized and improved on-board hydrogen generator
- Heat and water management can be accomplished by better understanding of operating conditions
- Borate precipitation can be managed by balancing fuel concentration and reactor pressure and temperature

Acknowledgements

- Center of Excellence for Chemical Hydrogen Storage
- Project Collaborators:
 - PNNL: modeling activities
 - Dave Rector, Scot Rassat
 - ROH, PSU, LANL, PNNL : SBH regeneration
- DOE program managers:
 - Grace Ordaz, Jim Alkire, Sunita Satyapal
- Center Coordinators
 - Chris Aardahl, Bill Tumas

Response to Previous Year Reviewers' Comments

- Comments received mostly pertain to Center as a whole, very few directly for this project.
 - MCEL's role:
 - develop modeling and engineering for on-board system;
 - Improve system level storage density
- Check the system gravimetric and volumetric capacity data from the previous DCX system demo (Natrium) and compare values by DCX and Millennium Cell.
 - Available information only limited to publicly disclosed data. DCX proprietary information not available.
- DOE request that the PI coordinate more closely on the overall efficiency analyses with TIAX and ANL.
 - Provided feedback to Argonne's paper on WTT calculations; learned the Excel tool for calculation WTT efficiency.
 - Became familiar with the H2A model for cost and efficiency.
- Communicate with Hydrogen Delivery Team, delivery has a capacity target of 13.2 wt% (though less stringent volumetric target of 27 g/l)
 - Presented to the Delivery Tech Team in October 2005 conference call.

Publications & Presentations

"Reactor Development for Hydrogen Generation from Sodium Borohydride" Presentation by Ying Wu, MRS Spring Meeting, San Francisco, CA, April 18, 2006

Critical Assumptions & Issues

Accuracy of reaction kinetics

- Affects fluid dynamics and operational parameters
- Inaccuracy in kinetic expressions will alter design parameters of other system sub-modules

Application to other Chemical Hydride systems

- Adaptability to other chemical hydride (e.g. NH₃BH₃)
- Liquid vs. solid fuel

System design of a Chemical Hydride Prototype

- Detailed system design will occur after go/no-go evaluation
- Optimizing overall unit
- Assuring complete safety