Combinatorial Synthesis and High Throughput Screening of Effective Catalysts for Chemical Hydrides

Xiao-Dong Xiang Internatix Corporation Fremont, CA

May 16, 2006

This presentation does not contain any proprietary or confidential information

Project ID # ST8

Overview

Timeline

- Start Mar. 2005
- Finish Sep. 2009
- 30% complete

Budget

- Total project funding
 - DOE share: \$1,100K
 - Contractor share: \$277K
- Funding received in FY05: \$200K
- Funding for FY06: \$300K

Barriers

- Catalyst Cost
- System life-cycle
- Regeneration processes

Partners

- Collaboration with PNNL, LANL, Penn, NAU on amine-boranes
- Collaboration with UCLA, PNNL, and LANL on novel polyhedral boranes
- Other collaborations with Center partners based on future discoveries

Objectives

Overall	Discover cost-effective catalysts for release of hydrogen from chemical hydrogen storage systems to enable deployment of on-board automotive hydrogen systems; and discover cost-effective catalysts for the regeneration of spent chemical hydrogen storage materials
2005	 Setup and validate combinatorial catalyst synthesis equipment Setup and validate high throughput catalyst screening methodologies Validate technologies on NaBH₄ hydroloysis system
2006	 Validate scale-up of catalyst from microgram to gram scale Screen catalyst libraries for H₂ release from ammonia borane Screen catalyst libraries for H₂ release from polyhedral boranes

Approach

Approach

- Combinatorial Synthesis
 - Internatix's proprietary combinatorial synthesis technology can efficiently generate hundreds of different catalyst compositions
- High-throughput Screening
 - Internatix's proprietary combinatorial high-throughput screening technology can efficiently test promising catalysts enabling rapid discovery and optimization of catalysts and catalyst composition

Approach

- Create combinatorial libraries consisting of both higher cost known catalytic metals and lower cost metals
- Qualitatively screen libraries for catalytic activity
- Quantitatively measure activity in microreactor
- Test scaled-up system to confirm bulk activity

Task Schedule

Teek	Project Milestones	Task Completion Date				
Number		Original Planned	Revised Planned	Actual	Percent Complete	Progress Notes
1	Development of high-throughput screening and testing methods for in-situ monitoring hydrogen release from borohydrides or BNH compounds	03/01/06			95%	Ongoing
2	Development of high quality nanoparticle and thin films using combinatorial synthesis methods	02/01/06			90%	Ongoing
3	Synthesis and screening of hydrogen-release catalyst libraries (in nano-particle or/and thin-film forms)	03/01/08			35%	Ongoing
4	Synthesis and screening of hydrogen-release catalyst libraries	03/01/08			0%	Not started.
5	Characterization of materials properties of candidate catalysts	03/01/08			This task is in parallel with Tasks 1-4	Ongoing.

Accomplishments

- Developed catalyst library screening methodologies
 - Including air-free methods for screening of dehydrogenation vs. hydrolysis mechanisms
- Screened hundreds of combinatorial compositions for NaBH₄ hydrolysis catalysis
 - Found several low-cost compositions with catalytic activity on par with Ruthenium
- Synthesized and tested several lead NaBH₄ hydrolysis catalysts on bulk scale (gram scale)
 - Results validated microscale procedures: several low-cost catalysts found with activity on par with Ruthenium and thus potential to help meet DOE targets

Accomplishments

- Screened hundreds of combinatorial compositions for catalytic H₂ release via NH₃BH₃ dehydrogenation
 - Found a few low-cost compositions with catalytic activity on par with Ruthenium/NaBH₄ systems
- Screened a hundred combinatorial compositions for catalytic H₂ release via NH₃BH₃ hydrolysis
 - Found a few low-cost compositions with catalytic activity on par with Ruthenium/NaBH₄ systems
- Screened a hundred combinatorial compositions for catalytic H₂ release via polyhedral borane hydrolysis
 Equal little activity under poutral aqueous conditions

Catalyst Library Synthesis and Testing

- Internatix Nano-Discovery Engine[™]
 - Generate nanoscale high surface area catalyst libraries for testing
 - Catalyst library samples can be handled under moisture-free environment
 - Handling under moisture-free environment enables differentiation between dehydrogenation and hydrolysis mechanisms (NH₃BH₃)
 - Proprietary screening of libraries for catalytic activity

- Lead candidates further validated in microreactor
- Rate of H₂ release is monitored by chamber gas pressure change

Example of Nano-Particle Libraries

Particle size and morphology screening

- Precise particle size control enables direct correlation between size and property
- Broad size distributions can obscure size dependent properties
- Same size particles, different composition
- Same composition, different sizes

Intematix

DOE Chemical Hydrogen Storage CENTER OF EXCELLENCE

Atomic imaging

Internatix's High Quality Crystalline Nano-particles

NaBH₄ Catalyst Screening

NaBH₄ + 4H₂O \rightarrow NaB(OH)₄ + 4H₂ Testing: 15% NaBH₄, 3% NaOH, aqueous

- Nano-catalyst libraries screened
- Positive and negative "hits" analyzed in microscale reactor
- Rates normalized to mol $H_2/g Ru/Al_2O_3/hr$.
- Several low cost catalysts identified

NH₃BH₃ Dehydrogenation Catalyst Screening

```
NH_3BH_3 \rightarrow "NH\XiBH" + 2H_2
Stoich: wt% TBD, <13.1%
```

- At least three lower cost catalysts identified
- Appreciable activity (15-30% Ru/NaBH₄) for dehydrogenation
- Potential to meet DOE release rate targets

0.8 HyCat-27-4-B activity to Ru/NaBH4 HyCat-493-C 0.6 HyCat-73-I HyCat-SB-25-C HyCat-SB-72-0 04 HvCat-SB-73-4 HyCat-73A blank 0.2 Ω 20 80 100 120 0 40 60 min

- Test conditions, 5% NH₃BH₃ in dry, organic solvent, under Ar
- Rates normalized to Ru/NaBH₄

NH₃BH₃ Hydrolysis Catalyst Screening

$NH_{3}BH_{3} + 4H_{2}O \rightarrow NH_{4}^{+} + B(OH)_{4}^{-} + 3H_{2}$ Stoich: 5.9 wt.% H_{2} @ 30 wt.% $NH_{3}BH_{3}$

- Several inexpensive catalysts identified
- Appreciable catalytic activity for hydrolysis
- Potential to meet DOE release rate targets

- Test conditions, 9% NH₃BH₃ in wet organic solvent
- Rates normalized to Ru/NaBH₄

Bulk Testing – NaBH₄ Catalysis

Ultrasonic

- Bulk testing confirms catalytic activity on par with Ru
- Several low-cost catalysts confirmed with appreciable catalytic activity (35 – 115% Ru)

Catalyst	Rate H ₂ (ml/min/g)		
Ru/Al ₂ O ₃	2400		
HyCat-SB-25-A	2750		
HyCat-SB-72-0	1750		
HyCat-SB-72-1	2400		
HyCat-SB-73-4	830		

H₂ Release Catalysts On-Board

DOE/FreedomCar Target: 0.02 g H₂/s/kW

• For 75 kW power plant: $1.1 \times 10^6 \text{ mL H}_2/\text{min}$

Catalyst	H ₂ release* (mL/min/g catalyst)	g active catalyst required	Cost of active catalyst**
Ru	8.0 x 10 ^{3*}	140	\$1800
HyCat-SB-25-A	9.2 x 10 ³	120	\$50
HyCat-SB-72-1	8.0 x 10 ³	140	\$35
HyCat-SB-73-4	2.8 x 10 ³	390	\$125

*Scaled to known value for Ru, **Based on constituent element pricing @ Alfa Aesar

Results Summary

- Several lower cost catalysts have been found for each of a variety of chemical hydrogen storage systems
 - NaBH₄: Bulk testing has confirmed catalytic activity on par with Ru. Reduction of on-board system cost by >\$1000 possible with new catalysts
 - NH₃BH₃: Several leads generated for each of dehydrogenation and hydrolysis. Collaboration with PNNL and LANL clarified the two different mechanisms. Bulk testing is in progress
- As per Center pathways, now that general conditions for Polyhedral Borane catalysis have been established, high throughput screening for discovery of lower cost catalysts can commence

Future Work

- NaBH₄ systems
 - Will continue to use this known system to validate next generation discovery methodologies
- NH₃BH₃ systems
 - Testing under scaled-up conditions to validate library and microreactor results for hydrogen release
 - Further catalyst optimization will be pursued in conjunction with PNNL and LANL collaboration on decomposition pathways related to catalyst composition (i.e. suppression of volatile B or N containing products)
 - Screening of catalysts for regeneration of spent NH₃BH₃, in conjunction with pathways developed by LANL and PNNL
- Polyhedral Borane systems
 - Will make use of recently discovered catalysis conditions (Hawthorne Group -UCLA) to screen for lower cost and/or more efficient catalysts
- Other systems and Regeneration
 - Internative will assist in the screening of catalysts for hydrogen release from novel systems and regeneration reactions once those reactions are identified

Project Summary

Objective: Identify catalysts for (1) hydrogen release from chemical hydrogen storage systems and (2) regeneration of spent fuel, enabling an on-board hydrogen storage system which meets DOE 2010 targets

Approaches: Combinatorial catalyst synthesis and high throughput screening to reduce the time for catalyst discovery and identify more cost-effective catalysts

Technical Accomplishments and Progress:

- Combinatorial nano-catalyst synthesis apparatus assembled
- High throughput screening techniques developed and validated
- Bulk testing protocols using mass-flow controller established
- Low cost catalysts for NaBH₄ hydrolysis found, which help meet DOE 2010 targets for full flow rate (0.02 gH₂/s/kW) and system cost (\$2/kWh)
- Generated several leads for catalysis of H₂ release from NH₃BH₃

Collaborations: PNNL and LANL on $NH_3BH_3 H_2$ release catalysis mechanisms. UCLA (Hawthorne group) on polyhedral borane H_2 release catalysis mechanisms.

Proposed Future Research:

- Bulk scale testing of catalysts for H₂ release from NH₃BH₃ systems
- Refinement of catalysts for H₂ release from NH₃BH₃ based on iterative feedback from partners' identification of decomposition products best suited for regeneration
- Catalyst discovery for H₂ release from polyhedral boranes using UCLA conditions
- Other systems catalyst discovery for H₂ release and storage material regeneration

Publications and Presentations

X. Xiang, "Combinatorial Development of Cost-Effective Catalysts for Solid State Hydride Materials," 2006 MRS Spring Meeting, San Francisco, April 2006, EE6.5.

Critical Assumptions and Issues

- Catalysis
 - Systems under study have been screened for thermodynamic feasibility of hydrogen release
 - Hydrogen release should be entropically favorable, therefore elevated temperatures should promote the H₂ release reaction
 - Screening method does not discriminate between H₂ release and other volatiles, such as borazine or ammonia. Partnership with PNNL and ¹¹BNMR can elucidate mechanism, once reaction is scaled up
- Technology scale-up
 - By screening for catalysts with heterogeneous systems, the scale-up from a micro-batch system to a bulk, flow based system can be proceed in a more straight forward manner
- Regeneration/cost of storage material
 - The ability to lower the cost of the storage material through effective regeneration may make these solutions more feasible than a disposable storage material would be