High Density Hydrogen Storage System Demonstration Using NaAlH₄ Complex Compound Hydrides

D. Mosher, X. Tang, S. Arsenault, B. Laube, M. Cao, R. Brown, S. Saitta, J. Costello

United Technologies Research Center East Hartford, Connecticut

> DOE Annual Peer Review Arlington, VA May 16 - 19, 2006

DE-FC36-02AL67610

This presentation does not contain proprietary or confidential information

STP 1

Overview

Timeline

- 4/1/02 Start
- 9/30/06 End
- 85% Complete

Budget

- \$3.8M Total Program
 - \$2.7M DOE
 - \$1.1M (28%) UTC
- \$0.8M DOE FY05
- \$0.8M DOE FY06

Barriers Addressed

- System Gravimetric Capacity: 2 kWh/kg
- System Volumetric Capacity: 1.5 kWh/L
- Charging Rate: 1.5 kg H₂/min
- Safety

Partners

- UTC Fuel Cells
- University of Hawaii
- Hydrogen Components, Inc. (HCI)

ALBEMARLE

- QuesTek, LLC
- Albemarle Corporation
- Spencer Composites
- Lyons Tool & Die

Research Center

Objectives

Project Objectives

- Design, fabricate and evaluate prototype solid state hydrogen storage systems based on catalyzed NaAlH₄ which can be used with other reversible complex hydrides of similar thermodynamics with minimal redesign.
- Identify and address key challenges for materials and systems, particularly those which differ from conventional metal hydrides.

Past Year Objectives

- Prototype 1: Evaluation
 - Test method refinement
 - Absorption / desorption experiments
 - Model verification
- Prototype 2: Development
 - Scaled-up media processing & catalysis
 - Optimized finned tube heat exchanger design
 - Powder densification development

Approach

Apply modeling, sub-scale experimentation and full scale development to identify & address critical technologies for complex hydride systems:

- Safety Analysis
- Media Kinetic Experiments & Modeling
- Heat Transfer Analysis & Optimization
- 50 g H₂ Subscale Experiments
- Full Scale Prototype 1
 - Component design & fabrication
 - Assembly hardware
 - Evaluation facility
- Prototype 2
 - Address identified challenges
- Fuel Cell Integration Analysis

Prototype 1 Overview

Prototype 1 elements

- High temperature (250 C) composite vessel
- Optimized aluminum foam based heat exchanger
- Full scale fabrication & testing
- 19 kg of NaAlH₄

Adjusted volume fractions

Whited Technologies

Full Scale Testing

Continued testing up to 25 cycles

Test Conditions

Charging

- Std. discharge: 150°C/vac./16hrs.
- 70 and 100 bar charging (16 hrs):
 - 80 °C
 - 100 °C

Discharging

- Std. charge: 100°C/100bar/16hr
- 2 bar discharging (16 hrs)
 - 90 °C
 - 100 °C

Data

- 2 ranges of Coriolis H₂ mass flow meters
- 2 vessel and 4 system pressure transducers
- 12 vessel & 15 system thermocouples
- 6 strain gauges

Initod

Technologies

Test cell with isolated control

Test Methodology and Data

- Totalized mass flow and pressure measurements are used to calculate absorbed / desorbed mass curves.
- A burst flow mode was developed to increase the effective resolution of the mass flow meters.

Absorption Tests

- Ultimate capacity of system is nominally 1 lb. (0.45 kg) of H₂
- Cyclic improvement is apparent for both 80 and 100 C at 70 bar

Challenges identified from first prototype experience

- Material processing scale-up with low cost catalyst
- Powder densification compatible with system fabrication which have been addressed in second prototype development

Prototype 1 Model Comparison

Prototype 2 Overview

Past year activities

- Scaled-up media processing & catalysis
- Optimized finned tube heat exchanger design
- Powder densification development
- Compact oil manifold

Catalysis Experiments

Materials

Commercial purity NaAlH₄: 87 % NaAlH₄, 5 % Na₃AlH₆, 7 % Al, 1 % inerts

TiCl₃ Costs

- 2001 \$154/m Ti⁺³
- 2002 \$924/m Ti⁺³
- 2005 \$1,955/m Ti⁺³

Alternate Catalysts (2005)

- TiCl₂ \$1,452/m Ti⁺²
- TiF₄ \$157/m Ti⁺⁴
- TiF₃ \$233/m Ti⁺³
- TiCl₃*1/3AlCl₃ \$46/m Ti⁺³

Compositions Examined

- 6% TiCl₃
- 4% TiCl₃
- 4% CeCl₃
- 6% TiF₃
- 3% TiCl₃*1/3AlCl₃

PCI Experimental Conditions

Isobaric Absorption

- 150°C/vac/24hrs
- T = 80, 100, 120 & 140 °C
- P = 68 bar

Isobaric Desorption

- 120°C/68bar/16hrs
- T = 70, 80, 90, 100, 110 & 120 °C
- P = 1 bar

Isothermal Absorption

- 150°C/vac/24hrs
- T = 120 °C
- P = 50, 68, 90, 110 bar

Research Center

Processing Methods

- SPEX mill
 - 5 grams
 - 40 g / 16 Hz
- Tumble mill
 - 0.5 kg
 - 1 g / 1 Hz
- High capacity shaker
 - 0.5 kg
 - 15 g / 10 Hz
- Attrition mill
 - kg quantities
 - 60 350 RPM

Scaled-up Processing

Large scale processing 68 & 110 bar charging pressures

Large scale processing with a low cost catalyst results in effective capacities for NaAlH₄ between 3.2% and 3.5% after cycling.

Heat Exchanger Design

Chnologies Research Center

Reaction Kinetics Model

Recalibration for attrition milled 3% TiCl3 / AlCl3 material

 $C_{1} \qquad C_{2} \qquad C_{3}$ NaH + AI + 3/2 H₂^{r_1} \leftrightarrow r_2 1/3 Na₃AIH₆ + 2/3 AI + H₂^{r_3} \leftrightarrow r_4 NaAIH₄

$$\left(\frac{dC_2}{dt}\right)_{r2} = A_2 \exp\left(-\frac{E_2}{RT}\right) * \left(\frac{P_{e,2} - P}{P_{e,2}}\right) * \left(C_1 - C_1^{sat}(T)\right)^{\chi_2}$$

H₂ absorption: model vs. experiment

Research Center

Heat Exchanger Design

Conduct higher length scale simulations of vessel cross section using effective properties determined from lower length scale fin unit cell simulations

Maximum T uniformity & kinetics

Different tubing placements in vessel crosssection can result in similar performance

Optimal design developed which shows only minor improvement in absorption rate with increasing effective thermal conductivity (i.e. 2X fin mass).

Powder Densification Overview

Combination of

- Hydride powder bulk density
- H₂ weight % capacity
- System volumetric efficiency

determine energy density

Hydride powder bulk density is as important as H₂ weight % capacity for system volumetric capacity

Powder Densification Approach

- Densification approach must be compatible with prototype fabrication method: composite vessel elevated T curing and NaAlH₄ safety concerns ⇒ fabricate composite vessel before powder loading.
- Goal to have lightest weight heat exchanger and pressure vessel ⇒ construct optimized finned tube heat exchanger within conventional dual domed vessel, requiring hydride powder loading through a reduced size port.

NaAlH₄ and other lightweight complex hydrides are considerably more difficult to pack than conventional metal hydrides (LaNi₅). Creates challenge to densely load NaAlH₄ within the HX structure through a small port.

Powder Densification Experiments

Develop powder loading procedure with a versatile, instrumented vibratory apparatus and progression of experimental configurations.

Dual axis vibratory shaker Controlled amplitudes and frequencies

Powder column Fundamental studies

Finned test article Capable of disassembly

Prototype 2 Demonstration

NaAlH₄ Material States

Powder Bulk Densities, [g/cc]

	Process 1	Process 2	Process 3		
	As-received	As-received	As-received	Dehydrided	Recharged
Original	0.462	0.391	0.334	0.362	0.351
Vibratory settling	0.740	0.465	0.399	0.460	0.430
Enhanced settling	0.751	0.669	0.629	0.607	0.555

Material processing and compositional state have a significant influence on particle morphology and densification.

Powder Densification Results

Enhancement methods developed in addition to baseline vibratory settling

Average densities obtained

- Powder column: 0.75 g/cc
- Finned HX: 0.65 g/cc

Improvement over Prototype 1 actual average density of 0.44 g/cc and peak density of 0.6 g/cc

- Conduct continued safety studies including decommissioning of Prototype 1.
- Fabricate Prototype 2 components and assemble.
- Test Prototype 2 9/30/06 Milestone.
- Compare system performance of Prototype 2 with modeling.
- Project material and system requirements to meet performance goals of 2.5 wt% and 4.5 wt% systems.
- Conclude contract with final report.

Summary

- First full scale NaAlH₄ prototype has been designed, fabricated and tested to identify and reprioritize key and in some cases unanticipated challenges (powder densification).
- Large scale processing method demonstrated with low cost catalyst having cyclic capacities up to 3.5 wt%.
- Finned tube heat exchanger designed with approximately 30% weight reduction.
- Powder loading and densification process developed compatible with composite vessel manufacture which has achieved densities between 0.65 and 0.75 g/cc.

Requirement	Units	DOE 2007 Targets	Prototype 1 Adjusted	Prototype 2 Projected
Gravimetric Density	kWh/kg	1.5	0.27	0.67 to 0.77
	kg H ₂ /kg	0.045	0.008	0.020 to 0.023
Volumetric Density	kWh/L	1.2	0.18	0.50 to 0.60
	kg H ₂ /L	0.036	0.0054	0.015 to 0.018

Supplemental Slides Not Required