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Overview

• Start 04/01/2005
• End  04/01/2009
• 20% complete

• Weight and Volume
• Refueling Time
• Hydrogen Capacity and 

Reversibility
• Lack of Understanding of 

Hydrogen Physiosorption• Total project funding
– $1,160,351 from DOE
– $290,088  from CIW

• Funding for FY05 : $200,000
from DOE, $50,000 from CIW

• Funding for FY06 : $50,000 from 
DOE, $12,500 from CIW

Budget

Barriers

• LANL Lansce-12, Yusheng Zhao 
• BNL, NSLS, Chi-Chang Kao
• PNNL, Thomas Autrey
• NIST, Dan Neuman, Terry Udovic, 

Craig Brown, and Juscelino Leao

Partners

Timeline



Objectives
Develop and demonstrate reversible hydrogen storage inorganic
clathrate materials with at least 7 wt.% gravimetric and 50 g H2/L materials-
based volumetric capacity, allowing refueling time  1kg H2/min,  with 
potential to meet DOE 2010 system-level targets.

• H2-CH4-X and  H2-H2O-X Systems, novel inorganic clathrates.  Explore P-T 
conditions and additional components  X (promoters, or guest molecules ) that 
will stabilize the clathrate structure. 
•Computer simulation study of binary and ternary systems to understand 
structural details and stability, molecular dynamics to predict new phases with 
a potential for hydrogen storage
• A dedicated gas loading system and large volume cells has to be developed 
for synthesis and recovery of hydrogen-based molecular compounds. The cells 
and gas loading system will be used at neutron facilities in structural and 
vibrational dynamics studies, for investigation and optimization of new low-
pressure synthesis routes and discharge kinetics.



Approach

• Explore P-T conditions and additional components  X (promoters, or guest 
molecules ) that will stabilize the clathrate structure.  Look for novel 
inorganic clathrate structures with larger cages capable to entrap hydrogen.
• Computer simulation study of binary and ternary systems to understand 
structural details and stability, molecular dynamics to predict new phases 
and characterize their stability formation kinetics
• A dedicated gas loading system and large volume cells are being
developed for synthesis and recovery of hydrogen-based molecular 
compounds. The gas cells are used at neutron facilities in structural and 
vibrational dynamics studies, and will be adapted for investigation and 
optimization of new low-pressure synthesis routes and discharge kinetics.



Technical Approach
• H2-H2O system• H2-H2O-X systems, select X from different materials cathegories

that form clathrates (H2O-X)
Argon (very small, double occupation, space for H2)
Organic molecules e.g. trimethylamine 4(CH3)3N-41H2O

(guest location fixed, nitrogen distort the cage structure slightly)
Strong acid e.g. HBF6 or HClO4 (anionic guest)
Tetrahydrofuran (THF)
Strong cages, i. e. (LiOH)x(H2O)1-x• H2-X-CH4 system, X is selected to optimize clathrate structure, X 

could be a mixture of water and all of the above• H2-AB ammonia borane (NH3BH3) clathrate, duel H2 storage
Goal: Stabilize clathrate at near ambient T and P

Maximize H2 capacity



Theoretical Descriptions Relies on a Theoretical Descriptions Relies on a 
ThreeThree--Prong ApproachProng Approach

1. Classical simulation: molecular dynamics with 1000s of atoms
2. Ab initio level description: structure relaxations in unit cell
3. Quantum Monte Carlo calculation: static calculations

Computational methods order with increasing accuracy:

•Molecular dynamics using predefined force-fields:

F = m a

•Very fast Simulations of many cages possible
•However, the accuracy depends on force fields that contain all 
information about chemical bonds and interactions.
•Study the cage stability with increasing T melting.
•Combine results with free energy calculations.

•Introduce different guest molecules
•Use simulation to select promising guest candidates



Theoretical Descriptions Relies on a Theoretical Descriptions Relies on a 
ThreeThree--Prong ApproachProng Approach

1. Classical simulation: molecular dynamics with 1000s of atoms
2. Ab initio level description: structure relaxations in unit cell
3. Quantum Monte Carlo calculation: static calculations

Computational methods order with increasing accuracy:

Ab initio simulation (Gygi, Livermore)

•Electrons are quantum mechanical (wavefunctions ).
•Schroedinger equation solved (density function theory)

•Ions are classical: F = m a

•Accurate host-guest interaction cage deformation
•Disorder
•Electronic and vibrational properties
•Orientation of guest molecules e.g. off-center location
•High pressure properties

Ĥ E



Theoretical Descriptions Relies on a Theoretical Descriptions Relies on a 
ThreeThree--Prong ApproachProng Approach

1. Classical simulation: molecular dynamics with 1000s of atoms
2. Ab initio level description: structure relaxations in unit cell
3. Quantum Monte Carlo calculation: static calculations

Computational methods order with increasing accuracy:

In quantum Monte Carlo, one propagates a correlated ensemple of walkers
in order to project out the groundstate wavefunction.

Advantages:
• Electronic correlation effects are included.
• Van der Waal interactions can be described.
• Study of H2 - water cage interaction
• Study of precise arrangements of molecules in cage
• Study of multiple H2 accupancy effects
Disadvantages:
• Method is very expensive
• Dynamics is currently not feasible

QMC study of exchange-correlation effects 
in bulk silicon (Foulikes).



Modified diamond anvil press has been adapted for moderate pressure Raman  (IR 
and XRD measurements also possible) The cylinder has a sapphire window, and the 
assembled cell can be clamped using screws. The piston assembly has a sapphire 
window and a copper spacer (sealed with teflon or indium rings) connected to a high 
pressure capillary. 

Accomplishments
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Accomplishments

Blue line – extrapolated stability line for CH4-H2O (sI & sII clathrates). Dashed line separates stability 
fields of sI and sII clathrates.  Blue circle represents the methane clathrate decomposition measured in 
our Raman cell. Red circles – H2-THF-H2O clathrate (Florusse et al., Science 306, p.469, 2004); Green 
squares and line – stability line of H2-H2O sII clathrate (W. Mao et. al.). Magenta – extrapolated sH
C6H12-H2O clathrate stability line.

Stability ranges of H2-(THF) –
H2O , CH4 – H2O clathrates.

Inset: Raman spectra of methane 
clathrate measured in our Raman 
cell from a flake of methane 
hydrate ice.
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Accomplishments (with PNNL, T. Autrey)

Raman spectra of the hydrogen vibron region. Top figure 
shows comparison between H2 region and AB + H2 region. 
Small shoulder indicates H2 in the AB compound. Bottom figure 
shows AB region spectra at three different pressures. The 
estimate from Raman intensities for the incorporation of  H2
into the AB structure is >3.3 volume %. 

A possible application of this effect would be combined molecular and chemical storage in this 
compound, duel chemical and molecular storage (6%+3%=9% by volume)



Carnegie Panoramic Cells (with SNAP team)

• Panoramic cells.
– With moissinite anvils 

these are capable of 
pressures to 30 GPa.

– Sample volumes are 
quite small. 

– Right is a picture of 
Panoramic cell mounted 
on the VIVALDI beam 
line at ILL (sample is 
FeO single crystal). 

Accomplishments



• Water (D2O) and promoter molecules 
are added in powder crystal form to 
increase the surface area for the 
hydrogen gas absorption. 

• Hydrogen is then added at ~1400 psi
and the sample is heated to transition 
point of 270 K. 

• After equilibration, the mixture is 
refrozen trapping hydrogen and 
allowing for the release of the excess 
hydrogen gas, so the pressure is now 
ambient. Cell design based on the work of 

Juscelino Leao, modified for slightly 
higher pressures

Accomplishments
Gas pressure cell designed to 7000 psi (~0.5 kbar).



FANS Instrument Setup (with NIST)

• Both the available 
Copper and Graphite 
monochromators were 
used to get a spectrum 
from 5 to 160 meV (40-
1300 cm-1).

• Special thanks to 
Juscelino Leao for his 
help in the execution of 
these experiments

From: http://www.ncnr.nist.gov/instruments/fans/fans_design.html

Accomplishments
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Clathrate hydrate compounds involving THF 
guest molecules were examined using 
Inelastic Neutron scattering at NIST (FANS). 

INS on Ice from Jichen Li, J. Chem. Phys. (1996)

Accomplishments
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THF occupies the larger cages leaving the 
hydrogen free to occupy the smaller cages.
Raman work was done to try and assign 
peaks empirically. Notice the differences 
between the hydrogen clathrate (green) 
and Ice (orange).

Accomplishments



Theory helps to interpret the vibrational spectra 
measured in neutron diffraction experiments at NIST

Phonon region Libron region

1 2 43

Accomplishments



Low frequency phonon mode High frequency phonon mode

Large cage breathing motion:
The cage opens and closes like a 
clamp. The one hexagon facing out 
is stretched.

Large cage surface distortion:
The hexagon on top is distorted like 
most other polygons

1 2

The scattering of neutrons lead to different modes of 
cage vibration: Phonons



The libron part of the vibrational
spectrum is characterized by the 
rotation of H2O molecules around 
different axes.

The scattering of neutrons lead to different modes of 
cage vibration: Librons

3

4 High frequency libron mode

Low frequency libron mode

H2O molecules rotate 
primarily around an axis
perpendicular to the 
molecular plane

H2O molecules rotate 
primarily around an axis
parallel to the line 
connecting H-H
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Hydrogen Clathrate
H2 clathrate was examined as a function 
of temperature and pressure.  Clathrate 
formation is exhibited by sharpening of 
O-H stretch (~3100 cm-1). Higher 
pressures (> 10 kbar) prohibited the 
formation of the hydrogen clathrate 
structure SII; the spectra shown most 
likely represent Clathrate C2 as 
disscused in Vos, et. al. Phys. Rev. Lett. 
(1993).

Low temperature vibrations are very 
unusual and may belong to a new 
clathrate form: further experiments are 
planned to elucidate the low-T clathrate
structure and hydrogen intake.

Accomplishments



Future Work
Year 2006:
Task 1: Further studies of  H2-CH4-X, H2-H2O-X systems, down-selection of two most 
promising compositions. 
Task 2: Characterization of the optimized clathrate phases by Raman, IR, x-ray diffraction, 
and neutron diffraction. 
Task 3: Investigation and optimization of new low-pressure synthesis routes and discharge 
kinetics.
Task 4: Computer simulation study of optimized ternary systems including molecular 
dynamics to predict new phases and characterize their stability and structural details. 
Task 5: A dedicated gas loading system will be modified and extended to allow 
measurements of the kinetics/thermodynamics of release and storage and measurements of 
gravimetric and volumetric capacity of new materials. 
Year 2007:
Task 6: Novel Clathrate Systems. Explore P-T conditions and additional components  X 
(promoters ) that will stabilize the large-cage clathrate structure, with faster formation 
kinetics.
Task 7: Computer simulation study of binary and ternary systems to understand structural 
details, kinetics, and stability.
Task 8: A dedicated gas loading system will be used for synthesis and recovery of hydrogen-
based molecular compounds, their optimization and fine-tunning, in larger volumes (1 cm3).
The system will be used at neutron facilities in structural and vibrational dynamics studies.



Project Timeline

Task 2005 2006 2007 2008 2009

H2-CH4-X and  H2-H2O-X 

Optimization and fine tuning

• Promoters, P-T conditions
• Kinetics, synthesis routes
• Computer simulations, 
structure
• Computer simulations, 
kinetics
• Characterization of new 
clathrates (Raman, IR, 
neutrons)

Gas loading system for sample
synthesis and neutron studies

Go/No Go
3 wt%, -78 oC

Go/No Go, <30PSi
6 wt%, -78 oC, 0.5 kg/min

Go/No Go, <30PSi
5 wt%, -78 oC
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