Clean Energy Research

Project III: Hydrogen Storage Using Chemical Hydrides

Eyma Marrero, Josh Gray, Carol Stork, Amy Beaird, Casey Campbell, Ashley Rhoderick, Tom Davis, Michael Matthews University of South Carolina May 25, 2006

STP38

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- 10/31/2004-10/31/2006
- 55% complete
 Budget
- Total project funding – \$559,875 DOE
 - \$134,250 contractor
- FY05 funding

 \$365,000 DOE
 \$91,250 contractor
- Funding for FY06

 \$194,875 DOE
 - \$43,000 contractor

Barriers

- System Weight and Volume
- Thermal Management
- Discharging Rates

Partners

Millennium Cell, Inc Eatontown NJ Dr. Ying Wu, Director R&D

Objectives

 Develop hydrogen storage and delivery technology based on steam + chemical hydrides for automotive fuel cell applications

 $NaBH_4 + (2+x)H_2O \rightarrow 4H_2(g) + NaBO_2 \cdot x H_2O + \Delta H_{rxn}$

- Quantify/optimize steam + solid chemical hydride reaction kinetics as basis for production of hydrogen
- Compare experimental data to FreedomCAR targets
 - Mass efficiency of reaction (8MAA)
 - Hydrogen production rate / kinetic data (12MAA)
 - Analysis of water utilization of reactor and hydration characteristics of products (14MAA)
 - Prototype design development (16 MAA)
- Develop prototype of steam hydrolysis reactor

Approach

- Hydrolyze chemical hydrides with dry steam, rather than aqueous catalytic process
 - Chemically simple reaction with humid H₂ gas product
 - Minimal water inventory in the reactor
 - Autothermal integration: use reaction heat to produce steam
- Operate reactor at low temperatures (100 150°C) and pressures (~ atmospheric)
- Basic research to minimize water utilization and maximize H₂ delivery rate
- Apply research to design a prototype system

Critical Assumptions and Issues

- Unreacted water from steam hydrolysis can be recovered & recycled to the reaction
- Heat of reaction can be recovered
- Cost and energy requirements of manufacturing and recycling NaBH₄ are crucial; research by others is addressing this.

Hydrogen Safety

- The most significant hydrogen hazards associated with this project are:
 - High reactivity of solid chemical hydrides when exposed to humidified air
 - Instability of aqueous NaBH₄ solutions
 - Toxicity and corrosivity of basic NaBH₄ solutions
- Our approach to deal with these hazards:
 - Steam/solid reaction minimizes water inventory in the reactor
 - Reactant is stored and transported in dry form
 - Reaction products are nearly dry, not an aqueous basic solution

1. Characterization of Hydrolysis Reaction Products (Hydrated Metaborates)

 $NaBH_{4(s)} + (2+x)H_2O_{(g)} \rightarrow 4H_{2(g)} + NaBO_2 \cdot x H_2O_{(s)}$

NaBH₄ was placed in the small beaker inside an isolated vessel as shown at left.
Hydrated metaborates, with unknown degree of hydration *x*, were generated by controlled exposure of NaBH₄ to H₂O vapor.

NaBO₂• xH_2O were characterized using TGA and XRD; analyses were repeated for standard samples of NaBO₂ •2 H₂O and NaBO₂ •4 H₂O.

Results are shown on the next two slides.

1. Characterization of Hydrolysis Products after Controlled Exposure to Steam

XRD of reaction product corresponds to NaBO₂·2H₂O

TGA of reaction product is consistent with $NaBO_2 \cdot 2H_2O$ standard

NaBO₂·2H₂O was the primary product of the hydrolysis reaction. This translates to a decrease in the potential gravimetric and volumetric efficiencies of 33%

1. Characterization of Borate Standards

 $NaBO_2 \cdot 2H_2O$ lost all its water (35%) before 400°C $NaBO_2 \cdot 4H_2O$ lost all its water (52%) before 400°C

 $NaBO_2 \cdot 2H_2O$ shows crystal transformation at 280 °C $NaBO_2 \cdot 4H_2O$ is less reproducible due to larger amount of H_2O in crystal structure

9

1. Thermal Dehydration of NaBO₂·2H₂O Standard

TGA: NaBO₂·2H₂O dehydrates in stages below 350°C

DSC: Peak at 280°C disappears after crystal structure transformation to NaBO₂ occurs

XRD: $NaBO_2 \cdot 2H_2O$ changes crystal structure with water loss

 $NaBO_2 \cdot 2H_2O$ transforms into $NaBO_2$ above 300°C

2. Steam Hydrolysis Kinetics: Apparatus and Procedure

- Heated packed bed reactor in upflow configuration
 - FY05 used tilted orientation
- N₂ sweep gas is used for inert blanketing
- Product gas flow rate is measured with digital flow meters.
 - FY05 used H₂O displacement
- Water in the product stream is condensed and quantified
- Initial $T_{rxr} = 110^{\circ}C$
- Liquid water flow rate = 0.1 mL/min

2. Results from FY05

- Good yields, low rates at 110°C
- Poor yield and rates at 140°C
- Thin films give higher initial rates
- Decreased yields are attributable to insufficient reactant contact

Description	T (°C)	Max Slope (mol/kg _{NaBH4} *min)	% of Theo. H ₂ Yield
NaBH₄ powder	110	1.018	88.2
NaBH ₄ powder	110	0.870	82.7
NaBH ₄ powder	110	0.825	94.0
NaBH ₄ powder	140	0.628	67.1
NaBH ₄ powder	140	0.327	40.8
NaBH₄ on glass beads	110	4.42	19.7
NaBH ₄ on glass beads	110	5.14	22.9
	x=0	11.1	100
Theoretical Rates	x=4	3.70	100
	x=6	2.78	100

2. Representative Results, FY 06

Condition of Reactant Stream	Initial Rate (mol/kg*min)	Theoretical H ₂ Yield %	H ₂ O Collected (% of amt fed)	Gravimetric Efficiency, % (mass H ₂ /(mass NaBH ₄ + H ₂ O))
Pure Steam	0.843	72.5%	53%	1.34
Pure Steam	0.892	85.4%	92.5%	7.31
Pure Steam	0.906	90.3%	87.5%	5.01
1mol% HAc	0.790	92.4%	75%	3.0
1mol% HAc	1.044	92.7%	90%	6.6
15 mol% MeOH	0.629	72.9%	90%	4.85

Gravimetric efficiency assumes that condensed water can be recovered and recycled.

2. TGA of Products from Reactor

Reaction products allowed to dry for several hours under inert N₂ atmosphere prior to characterization analysis

Reaction with acetic acid vapor solution generates product other than $NaBO_2$ ·2H₂O

Reaction with pure steam yields product similar to $NaBO_2 \cdot 2H_2O$ that was preheated to $250^{\circ}C$

3. ¹¹B NMR Analysis

Objectives

- Characterize solid reaction products from steam hydrolysis; compare to liquid-phase reaction intermediates
 - Detect BO_2^- and unreacted BH_4^- in solid products
- Analyze condensate from product stream
 - Detect carry-over of boron-containing species (if any)
- Use these results to help interpret steam hydrolysis reaction pathway and differences from aqueous hydrolysis pathway

Procedure

- 1mL of sample dissolved in 0.1M NaOH in 5mm NMR tubes
- Analyzed using a Varian Mercury/VX 400 with a BF₃ · O(C₂H₅)₂ reference

3. ¹¹B NMR Analysis

BH₃OH⁻ intermediate does not appear in analysis of steam reaction indicating a different reaction mechanism than the aqueous reaction. Understanding the steam hydrolysis mechanism may lead to strategies to reduce water usage and lower system weight.

4. Commercial / Industrial Application Development

- Steam hydrolysis of NaBH₄ is the basis of a start-up company DEnergy LLC.
- 3 invention disclosures have been filed with the University of South Carolina.
- Prototype design is currently being tested and developed for preliminary portable power applications
 – Gateway approach to automotive technologies
- More information is available at http://ip.research.sc.edu/

5. Future Research Directions

FY06

- Steam/solid NaBH₄ system
 - Measure intrinsic kinetic rate of reaction under different operating temperatures and partial pressures of steam
 - Determine hydration characteristics of products in order to improve gravimetric efficiency and understand kinetic limitations
- Investigate additional solid hydride systems
 - Evaluate additional hydrides and mixtures to meet FreedomCAR requirements
- Submit description of prototype system design
 - Design will be based on laboratory-scale experiments
 - Design will be evaluated according to FreedomCar targets such as mass and volumetric efficiency and startup dynamics

Summary

- Yields approach 100% with NaBH₄ in powder form with pure steam, and also with addition of acetic acid and MeOH
- Acetic acid and MeOH additives give consistent high H₂ yields
- Reaction product, NaBO₂·2H₂O, corresponds to an excess hydration factor of 2 (x=2)
 - Potential limitation on gravimetric/volumetric efficiency
- Hydration and crystal structure of NaBO₂·2H₂O are affected by reaction temperature and posttreatment.
 - Complete dehydration of NaBO₂·2H₂O occurs at T < 350°C

Publications and Presentations

- Michael A. Matthews, Thomas A. Davis, and Eyma Y. Marrero-Alfonso, 1. "Hydrogen storage in chemical hydrides". ACS National Meeting, Philadelphia. (Aug. 2004)
- Michael A. Matthews, Thomas A. Davis, and Eyma Y. Marrero-Alfonso, 2. "Production of hydrogen from chemical hydrides via hydrolysis with steam". AIChE Annual Meeting, Austin. (Nov 2004)
- Steam Hydrolysis of Chemical Hydrides: Meeting the Challenge of 3. Hydrogen Storage. Marrero-Alfonso, E.Y., Gray, J., Matthews, M.A., Davis, T.A. 230th ACS National Meeting, Washington, DC, Aug 28-Sept 1, 2005.
- New method for hydrolysis of chemical hydrides. Marrero-Alfonso, E.Y., 4. Gray, J.R., Davis, T.H., and Matthews, M.A. Second International Conference on Green and Sustainable Chemistry, and Ninth Annual Green Chemistry and Engineering Conference, Washington D.C. June 20-24, 2005.
- 5. J.R. Gray, E.Y. Marrero, T.A. Davis, and M.A. Matthews, "Steam Hydrolysis of Chemical Hydrides : Meeting the Challenge of Hydrogen Storage". 42nd Power Sources Conference Philadelphia, Pennsylvania. June 12-15, 2006. 20