First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems

J. Karl Johnson & David S. Sholl University of Pittsburgh Carnegie Mellon University DOE Metal Hydride Center of Excellence National Energy Technology Laboratory

Project ID # STP3

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Project start date: FY05
- Project end date: FY10
- Percent complete: 20%

Budget

- Requested total: \$1.38M
- Cost sharing: 20%
- FY06 \$175k (DOE), \$44k (cost share)

Barriers

- Access to adequate computing resources
- Efficient and accurate electronic structure algorithms
 Partners
- Collaborations with all experimental groups are sought
- Current collaborators:
 - HRL, GE, U. Hawaii, Stanford, UIUC, U. Utah, NIST, JPL, Cal Tech

Objectives

- Compute thermodynamic properties of metal hydride alloys—Heat of reaction, ΔH
 - Compute ΔH for known reactions to test accuracy of our approach
 - Compute ΔH for new reactions to identify promising destabilized compounds
 - This work complements experimental work on identifying destabilized metal hydrides (Focus area A—Destabilized Hydrides)
- Compute interfacial properties of hydrides
 - Metal-hydride interfaces
 - Surface energies of metal hydrides for nanoscopic hydrides
 - Apply principles learned on model systems to more promising novel materials.
 - Complements experimental work on improving kinetics for destabilized hydrides and other materials

Objectives

Fundamental processes in hydrogenation

- Study hydrogenation in destabilized hydrides and other systems to assess reversibility
- Look for common hydrogenation pathways that might be applicable to other materials
- Assess the role of interfacial transport
- Some destabilized hydrides are not easily hydrogenated—this work supports experimental efforts to design a practical destabilized hydride system

Approach

- First principles density functional theory (DFT) for periodic systems (plane wave)
- Generalized gradient approximation (GGA) for the exchange-correlation functional
- Finite temperature and entropic properties computed from a phonon density of states approach with the PHONON software package
- Transition state finding methods for reaction and diffusion problems

Destabilization of Metal Hydrides

Original concept introduced by Reilly and Wiswall¹ in late 1960's for Ni hydrides

Modification of dehydrogenation thermodynamics using additives - Stabilized dehydrogenated state reduces enthalpy of dehydrogenation

Recent application of this concept to light metal hydrides by Vajo et al.^{2,3}

Technical Accomplishments

A DFT-based Database of Reaction Enthalpies

We have optimized the crystal structures of 52 solid materials listed in Wycoff¹, Pearson² and ICSD³ comprised of AI, B, Ca, Li, Mg, Si, C, N, or H

Using this DFT-based database, we have considered 130 reactions that could not previously be evaluated as potential H_2 storage schemes.

- 1. R. W. G. Wycoff, *The Structure of Crystals,* The Chemical Catalog Company Inc., New York, 1931.
- 2. P. Villars, *Pearson's handbook : crystallographic data for intermetallic phases*; Desk ed. ed.; ASM International
- 3. The Inorganic Crystal Structure Database (ICSD), <u>http://www.fiz-informationsdienste.de/en/DB/icsd/</u>.

Technical Accomplishments

A DFT-based Database of Reaction Enthalpies Crystal Structure Issues:

Full crystal structure of $Ca(AIH_4)_2$ is not known experimentally. We used *ab initio* prediction of Løvvik¹

 Li_5N_3Si has very large unit cell with partial atomic occupancies. DFT calculations performed with two materials with compositions $Li_{54}N_{32}Si_{10}$ and $Li_{53}N_{32}Si_{11}$ with Si distributed randomly.

1. O. M. Løvvik, *Phys. Rev. B* **2005**, 71, 144111

Accuracy of DFT - based Values of ΔH

Experimental data available for many high Z metal hydrides (e.g. Sc, Pd, Ni, etc.)

RMS deviation in DFT results is 15 kJ/mol H_2 ; this is sufficiently accurate for screening purposes

1. Wolverton et al., *Phys. Rev. B* **2004**, 69, 144109

Reactions of Interest

■ Five new promising destabilization schemes identified – all have high storage densities and have promising thermodynamics.

■ A large number of schemes (not shown) are less promising for either storage density or thermodynamic reasons (or both).

Reactions of Interest (cont.)

Rxn 1: 3 LiNH₂+ 2 LiH + Si → Li₅N₃Si + 4 H₂; 7.16 wt.% H₂ Δ H = 24-30 kJ/mol H₂ (variants of Li₅N₃Si stoichiometry) Rxn 2: LiNH₂ + MgH₂ → LiMgN + 2 H₂; 8.19 wt.% H₂; Δ H = 32 kJ/mol H₂

Reactions of Interest (cont.)

Van't Hoff Plots for New Reactions

The equilibrium pressure is very high over the temperature range of interest
May be a useful material at

lower temperatures $\Delta H \sim 20 \text{ kJ/mol H}_2 \text{ over the}$ temperature range

Caveat: Reversibility might be an issue as \triangle H is low

Both these reactions have P_{eq} < 1 bar at room temperature
The equilibrium pressure would need to be increased for these reactions to be useful

Computational Study of Dissociation of Hydrogen on Mg₂Si Surface

- One possible kinetic barrier to Mg₂Si + H₂ → MgH₂ + Si is the dissociation of H₂ on surfaces of Mg₂Si.
 [Large barriers to H₂ dissociation are known to exist on Mg(0001)¹]
- This hypothesis can be disproved if facile pathways for H₂ dissociation are identified
- Many other atomic-scale processes must still be considered before a complete description of the overall hydrogenation reaction is available, i.e. oxide overlayer formation

Mg₂Si Surface Energies

Lower surface energies correspond to more energetically stable surfaces

H_2 Dissociation on $Mg_2Si(\overline{1}10)$

Pathway for H₂ dissociation determined using Nudged Elastic Band method

(39 kJ/mol after zero point vibrational energy corrections)

H₂ dissociation on 2/3 ML Oxidation Mg₂Si Surface

Images

Energy barrier to H₂ dissociation is 92 kJ/mol (80 kJ/mol after zero point energy corrections)

Mg₂Si Surface Oxide Formation (beyond 7/6 ML)

+ 0

+ 0

5/4 ML (15 O)

3/2 ML (18 O)

HYDRIDE -4.48 eV/Oxygen CENTER OF EXCELLENCE 4/3 ML (16 O)

Mg₂Si Surface Oxide Formation (beyond 7/6 ML)

+ 0

+ 0

-4.45 eV/Oxygen

-4.22 eV/Oxygen

VETAI

FXCELLENCE

11/6 ML (22 O)

-4.49 eV/Oxygen

7/4 ML (21 O)

-4.45 eV/Oxygen

H₂ Dissociation on Oxide Mg₂Si Surface

The adsorption energy per O atom is roughly constant from 1 ML to 7/4 ML, ~-4.5 eV

Coverage (ML)	1/3	2/3	1	13/12	7/6	5/4	4/3	17/12
E _{ads/O} (eV)	-3.57	-4.01	-4.44	-4.48	-4.45	-4.45	-4.48	-4.49
E _{ads/H} (eV)		-0.84	-0.53	-1.21	-0.23			
Coverage (ML)	3/2	19/12	5/3	7/4	11/6			
E _{ads/O} (eV)	-4.48	-4.45	-4.49	-4.45	-4.22			

Future Work

- Continue work on destabilized hydride reversibility
- Investigate new reaction schemes for destabilized hydrides including other light elements
- Continue work on computing P-T diagrams for metal hydrides
- Continue work on interfacial energies
- Contribute data to the UIUC toolbox data base
- Collaborate with Ursula Kattner, NIST by computing thermodynamic properties of Li₅B₄ and other materials

Summary

- We have screened over one hundred destabilization reactions based on reaction enthalpy using DFT calculations
- Five promising reaction schemes have been identified
- Equilibrium pressures have been predicted for three of the reactions from first principles
- Facile dissociation of H₂ should be observed on the clean Mg₂Si surface
- Oxide formation on Mg₂Si is highly exothermic
- Hydrogen dissociation is inhibited on the oxidized Mg₂Si surface
- Our calculations are consistent with the experimental observation that ball milling in a hydrogen atmosphere is required for hydrogenation of Mg₂Si

Publications and Presentations

Publications:

Identification of Destabilized Metal Hydrides for Hydrogen Storage Using First Principles Calculations, by S.V. Alapati, J.K. Johnson, D.S. Sholl, J. Chem. Phys. B, in press

Presentations:

- Invited talk at the "Hydrogen Storage with Novel Nanomaterials" workshop, 23-28 October, in Ban Honnef, Germany
- "Mechanisms of Hydrogen Adsorption in Metal Organic Frameworks", AIChE Annual Meeting, Cincinnati, Ohio, 31 October to 4 November, 2005.
- J. Karl Johnson, Sudhakar V. Alapati, Bing Dai, David S. Sholl "Computational Study of Metal Hydride Destabilization" American Physical Society March Meeting, Baltimore, MD, 13-17 March, 2006.
- Bing Dai, Sudhakar V. Alapati, David S. Sholl and J. Karl. Johnson "First Principles Investigation of Adsorption and Dissociation of Hydrogen on the Mg₂Si Surface" 231st American Chemical Society National Meeting, Atlanta Georgia, 26-30 March 2006.
- Sudhakar V. Alapati, Bing Dai, J. Karl. Johnson and David S. Sholl, "First Principles Calculations of Destabilized Alloys for Hydrogen Storage Applications" 2006 TMS Annual Meeting, San Antonio, TX, 12-16 March, 2006.
- Organized a session on "Nanotechnology related to the hydrogen economy" as part of the Nanotechnology and the Environment symposium, ACS National Meeting, Atlanta, GA, 26-30 2006

