First-Principles Computational Search for Reversible Room-Temperature Hydrides

Vidvuds Ozolins

May 16, 2006

University of California, Los Angeles Project ID # STP44

Timeline

- Start Date: 5/1/2004
- End date: 4/30/2007
- % complete: 67

Budget

- Total project funding
 - DOE: \$2,000,000
 - UOP: \$2,910,618
 - Ford: \$75,000
- DOE FY05: \$604,423
- DOE FY06: \$525,032

Barriers

- Barriers addressed
 - Useable H₂ density
 - 2.0 kWh/kg & 1.5 kWh/L
 - H2 Delivery Temperature Range
 - -40 to +85 °C
 - Cycle life (thermodynamic modeling)

Partners

- UOP LLC
- Ford
- Hawaii Hydrogen Carriers
- Striatus

- ✓ Using first-principles computational modeling, identify new H₂ storage materials that can enable the DOE 2010 targets in storage density (weight and volumetric) and operating temperatures
- Provide accurate reaction enthalpies for combinatorial material optimization at UOP LLC
- ✓ Provide leads for experimental testing/refinement using highthroughput combinatorial setup at UOP LLC

Approach

Use *first-principles density functional calculations* to obtain electronic, structural and crystal bonding properties of complex hydrides.

- Known complex hydrides:
 - Input:
 - Chemical composition
 - Crystal structure type & symmetry
 - Results of calculations:
 - Structural properties (e.g., volumetric densities)
 - Thermodynamic & vibrational properties
 - Reaction enthalpies ΔH and entropies ΔS
- <u>New (unknown) complex hydrides</u>:
 - Develop and apply methods for determining crystal structure
 - Calculate thermodynamics properties (ΔH and ΔS)
 - Screen for materials with enthalpies in the 20-50 kJ/mol-H₂ range

Overview of Progress

1st YEAR

2nd YEAR

3rd YEAR

Validated approach on known hydrides

Refinement of technical methods

– Literature search

Calculations for all known materials with
6 wt% H₂

Large database of reaction enthalpies

 Initial screen for new mixtures of materials Expand to new materials with unknown crystal structures

COMPLETED WORK:

- Mixtures of alanates:

 Stable compounds not found

Not promising

– Mixtures of alanates and borohydrides $X_n Y_m (BH_4)_p (AIH_4)_{n+m-p}$, where X and Y are monovalent cations (Li, Na, K):

Formation
enthalpies positive

Not promising

CURRENT WORK:

- Expanded search to new material classes:
 - Identified materials with 10-15 wt.% H_2 (theoretical)

– ΔH in the 30-40 kJ/mol-H $_{2}$ range

- Optimize these materials for lower ΔH and/or higher ΔS :
 - Mixing/Alloying
 - Destabilized reactions

FUTURE WORK:

- Complete material optimization
- Complete searching of phase space

Highlights

- First-Principles provides accurate predictions of decomposition enthalpies for *known* compounds. This provides confidence in predictions of thermodynamics for *unknown* compounds.
- In FY 2004, constructed a large database of first-principles calculated structural and thermodynamic properties of known alanates, borohydrides and amides. It is being used to screen for new reactions and materials.

Wolverton, Ozolins, and Asta, 2004

Highlights

First-principles can steer us *away* **from certain regions**:

✓ Investigated mixtures of alanates and borohydrides (LiAlH₄-XBH₄, where X=Li, Na, K). All studied compounds had positive formation enthalpies, *indicating that mixed alanates and borohydride-alanate compounds will decompose into constituent hydrides exothermically*.

First-principles can guide us *toward* **promising reaction classes**:

- We have predicted novel <u>materials/reactions with targeted</u> <u>thermodynamics (material-only, theoretical)</u>* :
 - ✓ 7-15 wt.%
 - ✓ ~120 g/L volumetric H_2 densities
 - ✓ 30-40 kJ/mol-H₂, including vibrational contributions

Structural Energies

- ✓ Ordered compounds are constructed from the known crystal structures of alanates and borohydrides
- \checkmark Which ones to pick?
- ✓ Answer: Use $\Delta E_X(Y)$, the excess energy of compound X (e.g., LiAlH₄) in the crystal structure Y (e.g., of NaAlH₄). Energies given in kJ/mol:

	LiAlH4	NaAlH4	KAIH4	LiBH4	NaBH4	KBH4
LiAlH4	0.0	4.0	12.2	8.3	21.0	7.3
NaAlH4	6.1	0.0	8.7	13.8	10.3	10.2
KAIH4	8.1	2.4	0.0	24.2	11.9	12.0
LiBH4	4.9	10.0	4.2	0.0	18.8	4.6
NaBH4	10.2	0.0	0.9	2.7	0.0	0.0
KBH4	10.7	18.3	0.8	13.9	0.0	0.0

Structures

Pick trial crystal structures with low values of $\Delta E_{x}(Y)$ for <u>all</u> end-compounds!

Mixed Alanates-Borohydrides

Mixing Alanates: MgNa(AIH₄)₃

Initial structure from electrostatic considerations

Relaxed structure from DFT

 $Mg(AIH_4)_2 + NaAIH_4 \rightarrow MgNa(AIH_4)_3 \quad \Delta E = +10.7 \text{ kJ/mol}$ Conclusion: MgNa(AIH_4)_3 compounds will not form!

UOP Results for Mixed Alanates

Mixing Energy (kJ/mol*H₂)

- First-Principles results agree with experiments and virtual highthroughput screening (VHTS) results at UOP:
 - Na-Li-Mg-Alanate phase diagram searched starting from hydrided side
 - No stable mixtures found under these conditions.

Crystal Structure Determination

• Problem:

- Crystal structure of material X is often not known
- Strategy:
 - Identify compounds in crystallographic databases (e.g., ICSD) with the correct chemical formula and the correct ionic coordination
 - Obtain a set of N structures (N is usually from five to a few hundred)
 - Run first-principles DFT calculations for the material X in all N structures, relaxing all structural degrees of freedom
 - Pick the lowest energy structure to get an estimate of the crystal structure and hydriding enthalpy

New Material Predictions

Energies relative to the lowest found (in kJ/mol f.u.)

New First-Principles Predicted High Density Storage Reactions with Δ H~30-40 kJ

- These materials show several decomposition pathways.
- Good news: all H₂ should be released at one temperature!
- All reactions distinct from DFT predictions of the CoE (Alapati, Johnson, Scholl, 2006)
- All reactions involve experimentally-synthesized materials

Some Examples	of Reactions:
---------------	---------------

REA CT IO N	$\Delta H (kJ/mol - H_2)$			ΔS at 298 K	H ₂ Wt.	Volu me density (g -H ₂ /L)*
	Static	With ZP E	T=300 K	$mol - H_2)$	% *	
MAT ERIA L #1	57	35	41	111	10	125
MAT ERIA L #2, REAC TION #1	51	31	38	117	15	120
MAT ERIA L #2, REAC TION #2	52	31	37	115	13	120
MAT ERIA L #2, REAC TION #3	53	31	38	114	12	120

* theoretical, material-only

Future Work at UCLA/Ford

- Search for ways to lower reaction enthalpies of materials #1 and #2 using:
 - Alloying
 - Destabilization (Vajo et al, 2004)
- Continue search for new materials/reaction based on complex hydrides
- Study/Optimize reaction enthalpies in the LiBH₄-MgH₂-LiNH₂ system in collaboration with UOP and Ford

Summary

- First-Principles modeling steers away from regions of phase space - e.g., mixtures of alanates and borohydrides are not promising
- First-principles modeling has identified materials with 10-15 wt. % theoretical H₂ capacity and Δ H in the 30-40 kJ/mol-H₂ range