Thermodynamically Tuned Nanophase Materials for Reversible Hydrogen Storage: Structure and Kinetics of Nanoparticle and Model System Materials

Bruce Clemens Stanford University Project ID#: STP 5 04/21/06

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Project Start Date: January 2005
- Project End Date: 2/28/2010
- Percent Completion: ~25%

Budget

- Total Project Funding: \$997,921
 - DOE Share: \$778,828
 - Contractor Share: \$199,093
- Funding Received FY05: \$150,000/\$37,500
- Funding Received FY06: \$150,000/\$37,500

Barriers Addressed

- B: Weight and Volume
- M: Hydrogen Capacity and Reversibility
- N: Lack of Understanding of Hydrogen Physisorption and Chemisorption.
- Partners
 - HRL Laboratories: collaborations about new material systems and complex/destabilized hydride system development
 - University of Pittsburgh: collaborated to obtain interfacial energies for Mg/MgH₂ interface

Objectives

• Perform In-Situ Structural Studies of Hydrogen Storage Materials

- Utilize high brightness x-ray source at Stanford Synchrotron Radiation Laboratory
- Construct Sieverts apparatus for in-situ control of hydrogen content
- Demonstrate feasibility of in-situ synchrotron studies
- Investigate Light Metal Hydride Model Material Systems
 - Use designed thin film model systems to investigate phase change and catalytic processes associated with hydrogen cycling
- Develop Kinetic Model of Nanoparticle Phase Transformations
 - Build continuum models of nanoparticle kinetics to illuminate mechanisms of hydride formation in nanoscale materials

Approach

In-Situ Structural Studies

- Real time structural analysis using high brightness synchrotron radiation
- in-situ hydrogen charging of candidate materials
- Correlate structural changes with hydrogen charging characteristics

Model Material System Design and Synthesis

- Design and grow model material systems using physical vapor deposition techniques such as sputtering
- Kinetic Modeling of Nanoparticle Transformations
 - Model kinetic processes of phase transformations in nanoparticles to guide future material selection and design

Kinetic Studies Using XRD

- Hot stage attachment on diffractometer allows hydride content to be monitored during sample discharge
 - Comparison of integrated intensities for Mg and MgH₂ yields fraction of film reacted
- Initial studies at Stanford Synchrotron Radiation Laboratory (SSRL) showed promise of XRD technique
 - Mg peaks intensify while MgH₂ peaks disappear as sample is discharged
- Further applications using in-house XRD equipment brought more quantitative kinetic data
- Utilizing hotstage on in-house XRD we obtained detailed kinetic information for several thin film samples
 - Plot integrated intensity for Mg(002) and MgH2(110) peaks vs. time

Mg₂Si System

- Initial attempts at hydriding monolithic Mg₂Si films were unsuccessful
 - Even at high (~200 bar) pressures and long (~48 hr) times using HRL's facilities
 - No MgH₂ phase seen in XRD data
- Questions:
 - Is the hydrogen diffusing through the Mg_2Si ?
 - Is there a problem with nucleation of the hydride phase in the Mg_2Si ?
 - Are the distances for the Si or Mg to diffuse in the structure to form the MgH₂ phase to large?
 - Is the Mg₂Si compound too stable for the reaction to proceed at an appreciable rate?
- Designed and deposited wide variety of multilayered structures to examine problems being encountered
 - Structures contained layers of Mg, Mg₂Si, and Pd in various configurations

Mg₂Si System: Samples

Monolithic Mg₂Si films with Pd capping layer

- Demonstrate ability to deposit alloy samples and attempt to hydride from dehydrided state
- Unable to hydride samples (200 bar H₂ for 48 hr)
- Non-stoichiometric monolithic Mg₂Si film with Pd capping layer
 - Deposited with excess Mg at ~Mg_{2.8}Si
 - Attempt to nucleate hydride formation with excess Mg
- Attempted same geometry with Ge additions
 - No silicide decomposition
- After hydriding at 200 bar H₂ for 48 hr
 - Complete transformation of Mg₂Si into MgH₂ and Si not observed

Depth Resolved AES

Mg₂Si System: Samples

Catalyst layer sample 25 nm Pd Attempt to catalyze formation of MgH₂ with layer of Mg on top of Mg₂Si layer 100 nm Mg Mg completely hydrided Mg_2Si did not decompose into MgH_2 + Si 100 nm Mg₂Si Sensor layer sample Si Substrate See if H₂ is diffusing through the Mg₂Si layer Mg layer beneath Mg_2Si completely hydrided - H_2 diffused through Mg_2Si layer Mg₂Si did not decompose into MgH₂ + Si **Sensor Sample** Other multilayer samples 25 nm Pd Thin Mg₂Si/Mg and Mg₂Si/Pd multilayers 100 nm Mg₂Si deposited to investigate effect of reducing diffusion length for Si in samples 200 nm Mg Mg₂Si did not decompose into MgH₂ + Si Si Substrate

Catalyst Sample

Mg₂Ge/Si Structures

- With little success of Mg₂Si system, we looked at alloying with Ge
 - Samples with Ge additions have shown increased kinetics over pure MgH₂*
 - *Gennari, et al. *J. Alloys Comp.,* vol. 334, p. 277-284
- Using co-deposition, we deposited alloy samples of Mg2Si/Ge
 - 400 nm Mg2Si.75Ge.25 + 25 nm Pd
 - Mg2Si.5Ge.5 + 25 nm Pd
- After hydriding at 200 bar H₂ for 48 hr, Mg₂Si/Ge remained
 - Small amount of MgH₂ seen
 - System still kinetically limited

- We grew Mg epitaxially on Al₂O₃ (001) and MgO (111) for the first time; done at RT and up to 100° C.
 - High-angle x-ray diffraction of as deposited samples indicates Mg grows singly oriented in the (001) orientation, with the c-axis out of plane
 - High-angle x-ray diffraction after charging indicates MgH2 forms singly oriented in the (110) orientation
- From this information we are able to determine the crystallographic orientation between Mg and MgH₂ in the films

- Phi scans indicate how MgH2 (110) plane lies on the Mg (001) plane
- With the high angle scans, they show MgH2 (110) [001] // Mg (001)[100]
- Observed solid phase epitaxial (SPE) regrowth of Mg during dehydriding process
 - Mg grew back in original orientation
 - Evidenced by comparing scans (a)-before hydriding vs. (c)-after dehydriding

Solid Phase Epitaxial (SPE) regrowth

- Growth of solid phase occurs at interface between original material and transformed material, not in transformed material or at another interface
- Crystal quality of regrown material will match that of original material, not that of transformed material
 - XRD rocking curves will match

SPE Regrowth On discharge, Mg regrows epitaxially on the remaining Mg at Mg/MgH₂ interface, not at MgH₂/Pd interface

- Films regrew in original Mg orientation upon discharging
 - Verified with XRD Phi scans
 - XRD rocking curves show that Mg regrew on existing (untransformed) Mg
 - Strong evidence for SPE regrowth
 - Mg rocking curves returns to original shape after discharging
 - Did not nucleate at MgH₂/Pd interface due to broad rocking curves for MgH₂
 - Much wider than Mg rocking curves

.

Catalyst Placement

- Investigate effect of bulk vs. surface catalyst placement
 - Ti catalyst has shown good results with NaAlH4, try with Mg as initial system
 - Compare kinetics to Mg films without Ti catalyst

Reference sample

- 400 nm Mg film with 25 nm Pd capping layer on Si wafer substrate
- Discharged over ~12 hrs at 82°C on XRD hotstage
- Kinetics similar to samples used to establish technique

• Surface catalyst:

- Thin layer of Ti (corresponds to ~5 wt. % Ti in Mg) deposited between Mg and Pd
- Bulk catalyst:
 - Same mass of Ti from above co-deposited with Mg
 - Deposited as solid solution mostly

Thermodynamic Modeling

• Hydrogenation of Mg nanoparticles

– Equilibrium pressure altered by interface terms:

$$P_{\rm H_2(eq)}^r = \exp\left[\frac{\Delta G^{\circ}}{RT} + \frac{2\Delta \gamma V_M^{\rm Mg}}{r_{\rm Mg}RT}\right]$$

Bond counting estimate for surface energy difference:

 $\Delta \gamma = 1.74 \text{ J/m}^2$

- First principles calculation gives 1.86 J/m2, Karl Johnson and Bing Dai, private communication 2005.
- Particles with d~4 nm have attractive Peq

Thermodynamic Modeling

 Interface cost drives up the energy of two-phase configuration

ELLENCE

Thermodynamic parameters from: Zeng, Klassen, Oelerich, Bormann, Int. J. Hydrogen Eng. 24, 989 (1999)

- Size changes the phase diagram!
 - Predicated supersaturation is 3 orders of magnitude above bulk

Thermodynamic Modeling

- Nanoparticle Nucleation
 - Nucleation of second phase has interface energy cost
 - Transformation occurs as interface sweeps through particle

- For r<3r* nucleation is easier than in bulk!
- Easier nucleation means lower driving forces needed for phase transitions

- Nanoparticles have:
 - Dramatically different thermodynamics and phase stability
 - Faster reaction kinetics
 - Easier nucleation
 - No "growth" phase

Future Work

- Construct pressure vessel for use with XRD facilities to enable *in-situ* sample charging
 - Extract kinetic data for sample charging
 - Observe structural changes related to hydriding and correlate with kinetics of samples
- Continue investigation of additional material systems
 - MgB and MgAl systems
 - Li-based systems
 - Go/No-Go decision point on Mg₂Si system
- Continue investigation into kinetics of thin film phase transitions and role of catalyst placement in those transitions
 - Mg system and others
- Investigate nanoparticle systems as well as thin films using established techniques

Responses to Previous Year Reviewers' Comments

 Not applicable as we did not have a "Review" last year since it was our first year on the project

Publications and Presentations

Presentations:

- "Nanostructures for Hydrogen Storage," Materials Research Society, Boston, MA, November 2005.
- "Structure and Kinetics of Nanoparticle and Model Hydrogen Storage Materials", Bruce Clemens, Stephen Kelly, Hermione Giffard, Next Generation Neutron Source Workshop, 7-8 June 2005.
- "The Formation and Dissociation of MgH2 in Thin Films Studied With X-ray Diffraction", Stephen Kelly, Hermione Giffard, Raj Kelekar, Bruce Clemens, Stanford Nanocharachterization Laboratory Inauguration, Sept. 2005.

Critical Assumptions and Issues

- Unable to observe hydriding directly with XRD using current equipment
 - Developing new *in-situ* hydrogen charging chamber for use on XRD equipment
- Assuming thin film materials absorbing at optimal storage capacity
 - May be absorbing more/less hydrogen than bulk systems
 - Verify hydrogen content using quantitative methods
 - Sieverts, TGA, etc.
- Have not directly observed phase transformation kinetics inferred from XRD studies
 - Working on directly observing hydride distribution in thin film samples using other methods (SEM, TEM, SIMS, etc.)

Summary

- Developed method to measure extent of hydride decomposition and structural changes during desorption using XRD
 - Allows measurement of system kinetics during desorption
- Attempted to hydride Mg₂Si directly using variety of thin film systems and configurations
 - Unable to obtain segregated hydride system after H₂ exposure
- Grew epitaxial Mg films on Al₂O₃(001) and MgO(111) for the first time
 - Determined crystal orientation relationship between Mg and MgH₂ to be MgH₂ (110) [001] // Mg (001)[100]
 - See strong evidence for solid phase epitaxial (SPE) regrowth of Mg during desorption of films not completely hydrided
- Began study of effect of catalyst placement (surface vs. bulk) on hydride formation and decomposition kinetics
- Continued efforts modeling the thermodynamics of nanoscale metal hydride material systems
 - Predicted extended solubility of H in Mg and possibility of altered phase transformation kinetics

