High Throughput Combinatorial Chemistry Development of Complex Hydrides

Guanghui Zhu Internatix Corporation 5/16/2006

Project ID:STP7

Internatix

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Start- Jan. 2005
- Finish- Sep. 2009
- 25% complete

Budget

- Total project funding
 - DOE share: \$720K
 - Contractor share: \$180K
- Funding received in FY05: \$150K
- Funding for FY06: \$300K

Barriers

- Slow kinetics
- Low reversibility
- Release of undesired compounds

Partners

- HRL labs MgH₂ + Si, LiBH₄ + MgH₂
- Sandia National Labs- Li-Mg-N-H
- Other partners for future collaborations

Intematix

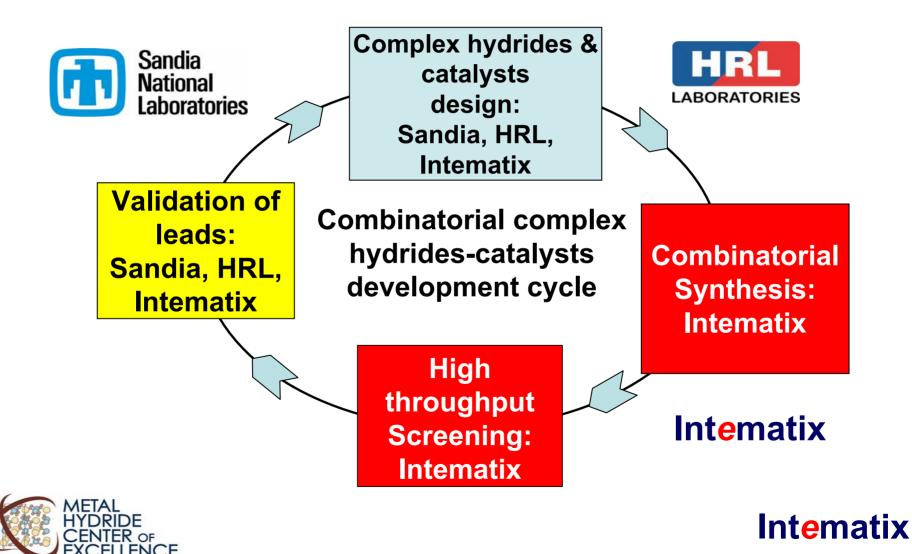
Objectives

Overall

Discover catalysts for metal hydride systems to achieve fast kinetics and high selectivity, thus to meet DOE's 2010 targets for start time (4 s), flow rate (0.02 (g H₂/s)/kW) and refill time (3 min)

• 2005

- Design, setup and validate combinatorial nano-synthesis systems
- Design, setup and validate high throughput screening apparatus
- Screen metal hydride candidates based on thermodynamic calculations


• 2006

- Screen catalysts for MgH₂+Si system dehydrogenation and rehydrogenation
- Screen catalysts for Li-Mg-N-H system dehydrogenation and rehydrogenation
- Screen catalysts for LiBH₄+MgH₂ system dehydrogenation and rehydrogenation

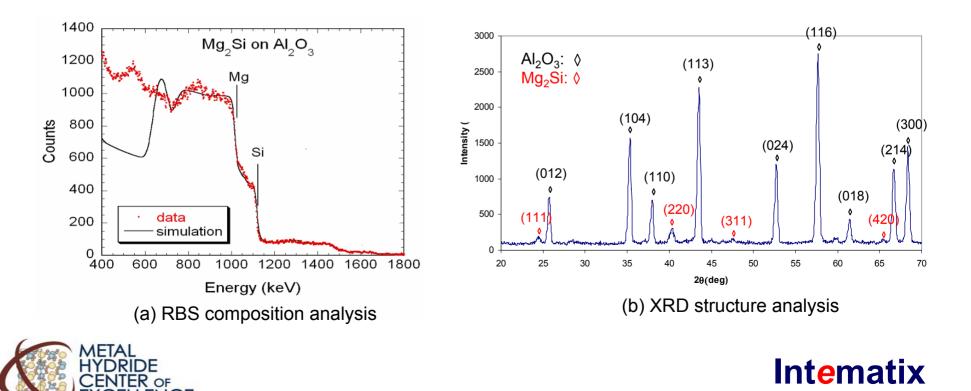
Intematix

Approach

Approach

- Metal hydrides preparation
 - Study the chemical properties of metal hydride candidates
 - Design metal hydride synthesis process
- Combinatorial catalysts preparation
 - Design catalyst compositions
 - Design combinatorial nano-catalyst synthesis process
- High throughput screening of catalysts
 - Design high throughput methods for quick and qualitative screening

- Collaborate with MHCoE partners for detailed characterization
- Optimize catalyst compositions for further screening


Conducted Metal Hydride Candidates Evaluation

- Database search/calculations of ca. 200 candidate reactions using HSC Chemistry®
- Identified more than 15 reaction systems with > 6 wt% H₂ and P-T windows close to DOE targets
- Identified many potential reaction systems with high H₂ wt% but no thermodynamic data to get their P-T windows

Initiated Catalyst Screening for Mg₂Si Hydrogenation

- Synthesized Nano-Mg₂Si
- Synthesized and screened more than 20 catalysts
- No catalyst with observable activity was identified at 105°C under 60 atm H_{2.}
- Large amount of catalyst candidates remain unexplored

Future Work (FY06-07)

- Continue catalyst screening for MgH₂ + Si System
 - Optimize metal hydrides and catalysts preparation methods
 - Prepare and screen more catalysts for Mg₂Si hydrogenation
 - Start catalyst screening for MgH₂ + Si dehydrogenation
 - Milestones

Identify catalysts which lower the temperature for observable release to below120°C to meet DOE's P-T window requirements (June 2006) Identify catalysts which enable Mg_2Si hydrogenation (June 2006)

- Catalyst screening for Li-Mg-N-H System
 - Collaborate with Sandia National Lab on metal hydride preparation and detailed catalyst characterization
 - Milestone

Identify catalysts which improve the hydrogen release rate to meet DOE 2010 targets and keep ammonia release below 1ppm at temperatures below 120°C (Sep. 2006)

Future Work (FY06-07)

- Catalyst screening for LiBH₄ + MgH₂ System
 - Collaborate with HRL labs on metal hydride preparation and detailed catalyst characterization
 - Milestone

Identify catalysts which lower the temperature for observable hydrogen release to below 230°C (Sep. 2006)

- Catalyst screening for other metal hydride candidates
 - Candidates include complex anionic materials, such as Ca and Mg borohydrides, and complex anionic alanates

Project Summary

Objective: Identify catalysts which improve the kinetics and selectivity for desired metal hydride systems to enable an on-board hydrogen storage system which meets DOE 2010 targets

Approaches: Combinatorial nano-catalyst synthesis and high throughput screening to speed up catalyst discovery

Technical Accomplishments and Progress:

 (1) Design, setup and validated combinatorial nano-catalyst synthesis and high throughput catalyst screening processes
(2) Identified more than 15 systems as potential hydrogen storage candidates by thermodynamic calculation using HSC Chemistry®
(3) Initiated catalyst screening for Mg₂Si hydrogenation and no effective catalysts were identified so far

Proposed Future Research: Optimize synthesis and screening methods; Continue high throughput screening of catalysts for MgH₂ + Si, Li-Mg-N-H, LiBH₄ + MgH₂ and other potential candidates

Intematix

Critical Assumptions and Issues

Catalyst Synthesis

- Obtaining alloy catalysts requires high temperature treatment; but metal hydride systems may decompose at such temperature
- Screening may start with catalysts for hydrogenation instead of dehydrogenation; but the reversibility of some hydride systems may not be achieved

• High Throughput Screening

- For metal hydrides with slow kinetics, elevated P&T are necessary for effective screening; but in-situ screening techniques can not be operated at such conditions
- Use high P&T cell to run dehydrogenation and rehydrogenation without in-situ screening; and use ex-situ method to characterize the results

