

Technology Validation

Sigmund Gronich John Garbak

2006 DOE Hydrogen Program Merit Review and Peer Evaluation Meeting

May 18, 2006

Technology Validation Team

Washington Team

- → Sig Gronich, Technology Validation Manager
- → John Garbak

Golden Field Office Team

- → Doug Hooker
 - Jim Alkire
 - Paul Bakke
 - Carolyn Elam
 - Jill Gruber
 - Dave Peterson
 - Henry Fowler, Navarro
 - Lea Yancey, Navarro
 - Stephanie Retureta, Navarro

• NREL Technical Support Team

- → Keith Wipke
 - Cory Welsh
 - Holly Thomas
 - Sam Sprik
 - Anelia Milbrandt

Objectives

Validate integrated hydrogen and fuel cell technologies for transportation, infrastructure, and electric generation in a systems context under real-world operating conditions.

- By 2005, \$3.60/gge and 8¢/kWh.
- By 2008, 20,000 hour fuel-cell durability (stationary), 32% efficiency, \$1,500/kW
- By 2009, 250+ mile range, 2000 hour fuel-cell durability (vehicle), \$3.00/gge hydrogen (untaxed)
- By 2012, demonstrate biomass plant to produce hydrogen at \$1.75/gge and renewable electrolysis at \$2.85/gge at the plant gate (untaxed)

Summary of Technology Validation Tasks and Projects

Task No.	Description	Project	FY 2006 Available Funds	Earmarks
1	Vehicle & Infrastructure	GM/Shell * Ford/BP * DCX/BP * Chevron/Hyundai-Kia * LLNL – High-pressure cold hydrogen storage vehicle demo*	\$25,600K \$290K	APCI – California Hydrogen Infrastructure Project NEXT Energy – Micro grid and hydrogen fueling facility Vehicle Projects LLC - Front end mine loader Santa Clara Valley Trans Auth - Bus demonstration
2	Natural Gas to H ₂	APCI – Development of a turnkey hydrogen fueling station * GTI – Development of a natural gas to hydrogen fueling station * APCI – Novel compression and fueling apparatus	\$960K \$230K 	None
3	Energy Stations	$\begin{array}{l} \mbox{APCI-Validation of an Integrated}\\ \mbox{system for a H_2 fueled power}\\ \mbox{park*}\\ \mbox{APCI-Validation of a PEM fuel}\\ \mbox{cell, H_2 reformer and vehicle}\\ \mbox{refueling facility}\\ \end{array}$	\$980K	City of Chattanooga – Fuel cell demonstration project

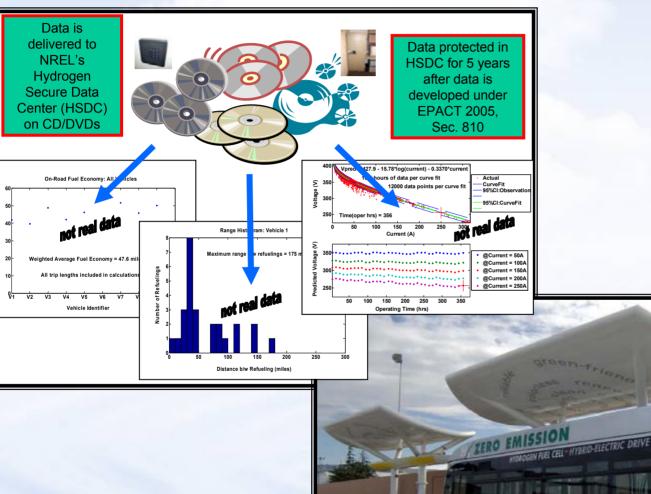
* Oral Presentation

Summary of Technology Validation Tasks and Projects

Task No.	Description	Projects	FY 2006 Available Funds	Earmarks
4	Power Parks	DTE Energy – Hydrogen Technology Park * Hawaii – Hydrogen Center for Development and Deployment of distributed energy systems Arizona Public Service – Hydrogen Power Park for Business Concept Opportunities SNL – Power Parks System Simulation *	\$400K \$65K \$250K	
5	Renewable	Clark Atlanta University – Hydrogen from Biomass for Urban Transportation	\$50K	UNLV – Hydrogen filling station
6	Analyses	NREL – Fleet and Infrastructure Analysis * NREL – Bus data collection and analysis	\$812K \$288K	

* Oral Presentation

Task 1 Vehicle and Infrastructure Learning Demonstration and Validation

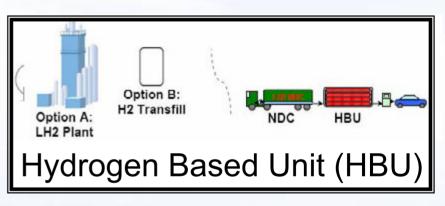


Objective: By 2009, 250+ mile range, 2000 hours fuel cell durability, \$3.00/gge hydrogen (untaxed)

- 59 vehicles deployed, operating from 9 hydrogen stations
- 200,000 miles accumulated
- On-road fleet monitoring and data collection systems implemented
- Dynamometer testing conducted for all four teams
- Fuel cell voltage degradation is being analyzed statistically for durability prediction
- Advanced natural gas reformers are installed and others are being planned for installation this year and early '07
- Power park is operating and energy stations are being planned
- 700 bar stations being considered
- Completed Emergency Response and Hydrogen Safety Training
- 16 of 26 composite data products published

Task 1 Learning Demonstration and Validation

a.



Task 1 Vehicle and Infrastructure Learning Demonstration and Validation

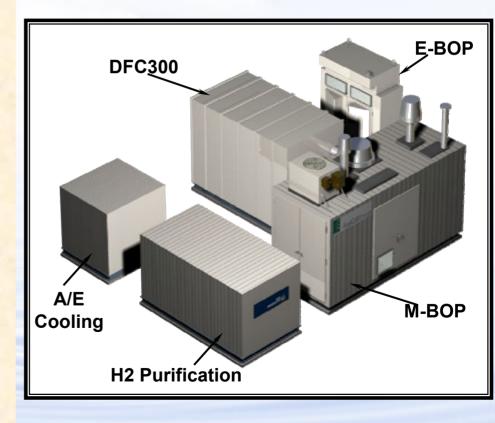
Objective: By 2009, 250+ mile range, 2000 hours fuel cell durability, \$3.00/gge hydrogen (untaxed)

- Three Hydrogen Fuelers in fabrication
- Designed new LH₂ Delivery Concept and Hydrogen Based Unit to reduce costs and space requirements
- Equipment designed for station to operate from a hydrogen pipeline
- Demonstrated ultra-high purification system
 based on physical adsorption system
- Evaluated 4 operating bus fleets for 3 bus manufacturers and 3 fuel cell suppliers
- Designed, built and tested a horizontal cryogenic vessel that meets the 2010 DOE weight and 2007 DOE volume goals
- Performed detailed engineering design of power plant and metal hydride storage for fuel cell mine loader

Task 2: Natural Gas to Hydrogen

Objective: By 2006, validate \$3.00/gge at \$5.00/MMBTU natural gas and 65% efficiency

- Completed system installation and checkout
- Integrated system operation is underway as of April 1, 2006
- Vehicles have been filled
- Achieved overall efficiency of 65.1%
- Projected \$3.03/gge using H2A for 1,500 kg/day station
- Composite storage tanks developed and installed on Mobile Refueler
- Efficient, compact fuel processor developed and tested
- Single stage 140:1 liquid compressor is built and undergoing testing (suitable for 700 bar dispensing system)



Task 3: Energy Stations

Objectives: By 2005, \$3.60/gge and 8¢/kWh By 2008, 20,000 hour fuel cell durability (stationary), 32% efficiency, \$1,500/kW

- Completed validation of \$3.60/gge hydrogen production and 8¢/kWh power production for PEM fuel cell energy station
- Peak PEM fuel cell efficiency 44% for hydrogen fuel
- Completed engineering design and development of anode gas handling and hydrogen purification systems for Molten Carbonate Fuel Cell System
- Expected power efficiency 49%; expected overall fuel and power efficiency 66%
- Economic projection of \$2/kg using H2A assumptions
- Operated 5 kW planar Solid Oxide Fuel Cell energy station as of Feb. 5, 2006 – 2,255 hours of operation, 98% system availability
- Peak stack efficiency 37.7%
- Peak system efficiency 60.2%

Task 4: Power Parks

Objectives: By 2005, 68% electrolyzer plus BOP efficiency (76% by 2010) By 2008, 20,000 hour fuel cell durability (stationary), 32% efficiency, \$1,500/kW

- Alkaline electrolyzer and BOP achieved 59% efficiency over 8
 months
- Compressor meets DOE target (2005) for the relative work in the electrolyzer system
- For 1,500 kg/day electrolyzer \$4.75/kg is achievable (2005) but innovation needed to achieve \$2.85/kg
- Polarization curve for PEM fuel cell determined from 3 sites (APS, DTE and HNEI) with excellent repeatability
- Fuel cell system peak efficiency is 44% for hydrogen fuel
- Fuel cell cost is \$3,000 / kW
- Fuel cell as peaking system had 1,500 hours durability

Task 5: Renewable Systems

Objective: By 2012, demonstrate biomass plant to produce hydrogen at \$1.75/gge and renewable electrolysis at \$2.85/gge at the plant gate (untaxed)

- Completed design, construction and integration of reformer with pyrolyser
- Completed 100 hours of successful pilot unit operation
- Completed 1,000 hour test modifications
- Completed 1,100 psig electrolysis / compression / distribution system design
- Tested unit and it is delivered to site

Future Work

Task 1Vehicle and Infrastructure Learning Demonstration and
Validation

- Complete composite data products for fuel cell durability, reliability, efficiency and startup times
- Complete composite data products for hydrogen production costs, efficiency, maintenance and installation
- Complete installation of seven stations utilizing advanced delivery systems
- Install and test cryogas tank on Prius
- Continue to take operation and maintenance data for bus program
- Task 2 Natural Gas to Hydrogen
 - Planned six month operation on two fueling stations
 - Install and operate liquid compressor at a fueling station
- Task 3 Energy Station
 - Install and operate high temperature energy station at test site and make decision to
 install at fueling station
- Task 4 Power Park
 - Install and operate a power park on Big Island of Hawaii
- Task 5 Renewable
 - Complete 1,000 hours biomass pyrolysis system test
 - Complete installation and test of 1,100 psig electrolysis system and optimize its performance

For More Information

DOE Hydrogen Technology Validation Team

Sigmund Gronich, Technology Validation Manager

202-586-1623

<u>Sigmund.Gronich@ee.doe.gov</u>

Doug Hooker, Golden Field Office 303-275-4780 Doug.Hooker@go.doe.gov John Garbak, Technology Development Manager

202-586-1723

John.Garbak@ee.doe.gov

Keith Wipke, NREL 303-275-4451 <u>Keith_Wipke@nrel.gov</u>

www.eere.energy.gov/hydrogenandfuelcells