Power Parks System Simulation

Andy Lutz, Carl Mas, Elliott Schmitt Combustion Research Facility Sandia National Laboratories Livermore, CA

TV-2

Hydrogen Program Annual Review May 16, 2006

This presentation does not contain any proprietary or confidential information.

Overview

Timeline

- Started FY03
- Finish: end of FY06
- Percent complete: 85%

- Budget
 - FY 2006: 250 K\$

Barriers addressed

- Overall performance for stationary H₂ systems
- MYPP defined cost and efficiency targets for distributed H₂ production
- Natural gas:
 - 3 \$/kg (2005) with 4 \$/GJ natural gas
 - Reforming efficiency:
 - 69 % (2005), 80 % (2010)
- Electrolysis:
 - 4.75 \$/kg (2005) and 2.85 \$/kg (2010) from electricity at 0.04 \$/kWh
 - Efficiency: (electrolyzer + BOP)

- 68 % (2005), 76 % (2010)

Overview (con't)

- Partners
 - Arizona Public Service (APS)
 - Ray Hobbs
 - Scott McCamman, Dimitri Hochard (ETEC)
 - DTE Energy
 - Rob Regan, Bruce Whitney
 - Rob Fletcher, Elliott Schmitt (Lawrence Tech.)
 - Energy Resources Group, UC Berkeley
 - Carl Mas, Tim Lipman
 - Hawaii Natural Energy Institute (HNEI)
 - Mitch Ewan, Richard Rocheleau, Severine Busquet
 - Stanford's Global Climate & Energy Project
 - Adam Simpson, A. J. Simon, Chris Edwards

HAWAII NATURAL ENERGY INSTITUTE

Objectives and Relevance to H₂ Program

Objectives

- Develop a flexible system model to simulate distributed power generation in energy systems that use H₂ as an energy carrier
 - Power parks combine power generation co-located with a business, an industrial energy user, or a domestic village
- Analyze the performance of demonstration systems to examine the thermal efficiency and cost of both H₂ and power production

Relevance to the Multi-year Program Plan:

- Technical Analyses
 - Analyze H₂ and electricity as energy carriers and evaluate synergies
 - Analyze advanced power parks for production of both H₂ and electricity
 - Determine the economics of H₂ and electricity co-production

Approach

Combine engineering and economic analysis

- Assemble engineering model as system of components
- Component models based on fundamental physics and chemistry
 - ex: Chemkin for thermodynamic properties and chemical equilibrium
- Economic analysis modules linked to components
- Validate simulations with data from DOE demonstration projects
 - Conducted site visits to establish working relationships with engineers
 - Hosted LTU summer student to coordinate data collection & modeling

Software Design

- Create a library of Simulink modules for H₂-specific components
- Library components can be quickly re-configured for new systems
- Generic components can be customized using specific data
- GUI developed for a sample system (Sandia internal funds)

Library of Simulink modules

- Newly developed components:
 - Wind turbine and resource
 - Wind resource model takes hourly wind data as input
 - Turbine model power map and wind shear
 - Chiller
 - Model pump work and refrigerant cycle with coefficient-of-performance

• Existing components:

- Reformers steam methane and autothermal (partial oxidation)
- Electrolyzer balances mass & energy, including phase change and purification
- PEM Fuel cell uses experimental data for polarization curve
- Compressor multi-stage with intercooling, isentropic efficiency
- High-pressure storage vessel real-gas equation-of-state
- Photovoltaic solar collector solar incidence with location & time of day
- Economic analysis modules are consistent with H2A
 - Levelized cost approach uses H2A parameters for interest, taxes, depreciation, capacity factor

Simulations of DOE demonstration systems

DTE Energy Hydrogen Technology Park

- PV arrays & grid feed electrolyzer
- H₂ for PEMFCs (10 at 5 kW each) and vehicle refueling station
- Hawaii Natural Energy Institute
 - Wind turbine proposed for Big Island
 - Electrolyzer to produce compressed H₂ for transportation
 - 5 kW PEMFC evaluated in FC testing center
- Arizona Public Service (APS) refueling facility
 - H₂ produced by PEM electrolyzer from grid and PV electricity
 - H₂ stored at low-p and used by PEMFC and ICE gen-sets
 - H₂ compressed for vehicle refueling

Projected cost of H₂ from electrolysis at DTE

- H₂ production rate has non-linear effect on cost
- Scale electrolyzer capital cost with production rate to 0.6 power
- Electricity price set to 0.025
 \$/kWh for off-peak power

- To meet DOE electrolysis targets
 - 2005: 4.75 \$/kg maybe feasible, depending on scaling to 1500 kg/d
 - 2010: 2.85 \$/kg will need innovation and capital reduction

Simulation of photovoltaic panels at DTE Energy

Solar insulation model

- Clear-sky algebraic model uses geographic location
- Adjusted model solar-toelectric efficiency = 9%
- Correct monthly energy collection for number of cloudy days

Data from DTE park

- 26.7 kW capacity in 2 arrays: fixed and tracking
- Peak capacity factor ~ 0.3

Comparison to DTE PV Data

Electrolyzer operation at DTE Energy H₂ park

- Hydrogenics/Stuart unit
 - Rated capacity: 225 kW
 - Operation range: 150 180 kW
- Efficiency data
 - Data from DTE Energy website
 - Stack and BOP, not compression
 - Steady operation data collected for runs > 10 hrs
 - Monthly average data includes standby power use
 - Difference emphasizes the influence of duty-cycle
 - Average over 8 months
 - Steady operation = 59 %
 - Operation with standby = 48%

Monthly Electrolyzer Averages

Compressor meets DOE target for the relative work in an electrolyzer system

- Isentropic efficiency definition:
- MYPP specifies 2 groups
- Compressor group is <u>not</u> an efficiency
 - Merely a relative factor between electrolyzer and total system efficiencies

$$\eta_{\text{total}} = f \eta_{\text{elect}}$$

	DTE Data	2005 Target	2010 Target
Cell & BOP	60%	68	76
Comp, Store, Disp	95%	95	99
Total	57%	64	75

$$= \frac{W_{\Delta S=0}}{W_{comp}}$$

η

Updated economic analysis of HNEI electrolysis

• Alkaline electrolyzer data used to set model

- 12 kg/d at 43% efficiency (LHV)
- Compressor: 21 MJ/kg-H₂ at 2000 psi
- Scale capital cost to 1500 kg/day
 - Includes compression and 2% O&M
 - Electricity variation:
 - DOE target assumed 0.04 \$/kWh
 - Honolulu: 0.15 \$/kWh
 - Big Island: 0.22 0.32 \$/kWh

- To meet DOE targets for water electrolysis (0.04 \$/kWh)
 - 2005: 4.75 \$/kg achievable for 1500 kg/day electrolyzer
 - 2010: 2.85 \$/kg will need innovation

Wind resource for proposed HNEI power park

- Wind resource at Kahua Ranch, Big Island, HI
 - Hourly average wind speed data at 27 m in 1993
 - Wind power class: 5
- 500 kW wind turbine
 - Hub height: 30 m
 - Swept area: 866 m²
 - Predicted capacity factor: 0.24
 - Expanded correlation to long-term data, capacity factor: 0.37

Probability Density Function

- Modeling approach
 - Input hourly average wind speed and air density
 - Wind shear characterized using power-law relation
 - Wind turbine power map predicts hourly average power output

Wind data source: http://www.hawaii.gov/dbedt/ert/winddata/winddata.html

Projected cost of electricity from HNEI wind turbine

- Parameter Study:
 - Vary wind turbine hub height
- Wind turbine rated at 500 kW
- Wind speed data from Kahua Ranch in 1993
- Economic analysis uses H2A Parameters
- Capital cost includes turbine, tower, and installation
- ~ 2 / 3 of electricity cost is from capital cost of turbine

Projected cost of H₂ from proposed HNEI wind turbine

- Turbine rated at 500 kW
- Model assumptions:
 - Electrolyzer output:
 - 50 kg/day
 - 60% efficiency (LHV)
 - Includes compression
 - Parameter study
 - Electrolyzer capital cost
 - Electricity from wind turbine
 - Includes O&M = 2% Capital
- Cost contributions at:
 - 0.06 \$/kWh
 - 7 \$/kg-H₂

3.35
3.19
0.46

Economic parameter study: electrolyzer capital cost to meet program targets

- Levelized cost using default H2A values
 - With O&M = 2% of capital
- Variables:
 - cost-of-electricity
 - efficiency
- MYPP target: 2.85 \$/kg
- Shaded regions are range of capital to meet goal at given efficiency

FC stack performance at DTE hydrogen park

Polarization data

- Stack V-I data averaged over periods of steadyoperation
- Data from 10 stacks grouped by load
- Averaged data used to fit linear model
 - Error bars show 2 std. dev.
- V-I data can be used in 2 levels of FC model
 - Detailed model
 - Simple efficiency vs. power curve-fit

Fuel Cell Polarization Curve

FC polarization data from 3 sites agree, providing model calibration

- Model requires V-I curve as input to fuel cell
 - Determines component efficiency versus load
- Adjust polarization curve to fit data provided by Partner
 - Operated Plug Power FC at steady-state
 - Normalized data for use in generalized model

Fuel cell system operating data at 3 sites

- Hydrogen fuel cell system efficiency (LHV)
 - Based on net DC power out and hydrogen flow
 - Power regulated to 48V
 - System includes fuel cell stack, balance of plant, and DC-DC converter
- Agreement in practical range:
 - 48 % system at half load
 - 45 % at full load
- Model analysis performed in this load range

Projected cost of electricity from HNEI FC

Capital cost for 5 kW-DC fuel cell system

- 45% efficiency (LHV)
- Parameter Study:
 - Fuel cell capital cost
 - Vary O&M from 10-30% for stack replacement
- H₂ at 5.37 \$/kg from electrolyzer at nominal conditions:
 - 1500 kg/day production rate
 - 0.04 \$/kWhr electricity

We developed a GUI for non-Simulink users

1st GUI: Electrolyzer, H₂ storage (gaseous), Compressor, Fuel cell

<u>Left side:</u> user inputs

	🛃 Figure 1: h2g - HNEI 3	
	<u>File Edit View Insert Iools Desktop Window Help</u>	
	다 🔊 🖬 🎒 🖕 🔍 의 🐙 🔲 📰 💷	Right
zor		aidar
201,	AC Dower Inpute	<u>side:</u>
le	Step five (a) 29900	model
	Initial Value (s) 30500	model
5),	Final value (s) 0 130	outputs
sor,	Compressor Inputs	and a
	Compressor output pressure (atm) 142	choico
		CHOICE
	_ E-Load	of
	Period for load cycle (s) 86400	· ·
	Peak electric load (VV) 5000 80	graphs
•		•
-	Configuration Parameters 0 4 8 12 16 20 24	
ıts		
	Electrolyzer System	
	Total Efficiency (%): 25.004	
	Electrolyzer Module Electrolyzer Module	
	Compressor Compressor	
	Number of stages (#) 4	
	Overall Efficiency (%) 70 Final COE (\$404b) : 2120	
	Vessel	
	Volume (L) 882	1
		CDE
	_ Fuel Cell System	CRE

Future Work

- Compare model to data from DOE power parks
 - APS: apply model to new data on HBR electrolyzer
 - DTE Energy: evaluate new electrolyzer expected in summer
 - HNEI: Compare model predictions with wind turbine data
- Analysis of biomass pyrolysis
 - Analyze data from peanut shell pyrolysis demonstration
 - Collaborate with EPRIDA, U. of Georgia, NREL
- Collaborate with Stanford's Global Climate & Energy Project
 - Implement 2nd-law exergy analysis to measure efficiency in terms of availably energy for a process

$$A = (E - U_0) + p_0(V - V_0) - T_0(S - S_0)$$

Future Work (con't)

- Collaborate with grad-student visitor in UK/US exchange program
- Emma Stewart (U of Strathclyde)
- Research Interests
 - Modeling of fuel cells for electrical power systems and distributed generation
 - Power electronics modeling for electrical grid network integration
 - Testing methods for analyzing electrical performance in relation to the electrochemical reactions
 - Electro-Impedance Spectroscopy
 - Load and Transient Analysis

Randles Cell

Impedance Analysis

Summary

Analysis of electrolysis at 3 power parks: APS, DTE, HNEI

- System efficiency range: 35 to 57 % including BOP & compression
 - Best efficiency is about 10 % points short of 2005 target
 - Standby power and chiller loads are significant
 - Duty cycle is an issue—as in driving cycle for vehicle mileage
- H2 cost depends on:
 - Electricity price which depends on region and time-of-day
 - Capital cost which depends on scale
 - H2 price range:
 - 20 \$/kg at scale of power parks
 - ~5 \$/kg at 1500 kg/d with optimistic scaling factor
- Electricity from fuel cells returned at peak load is not competitive
 - except for isolated cases like Big Island at 0.32 \$/kWh

Supplemental Slides

Response to FY 2005 review

Reviewers' major comments:

- 1. Be more proactive with technology validation power park projects to ensure good quality data
- 2. Consider approaches to enable broader dissemination of analytical models
- 3. What is plan for interfacing with HFCIT Systems Analysis & Systems Integration activities?

• Response:

- **1**. Working directly with engineers at APS, HNEI and DTE
 - supporting LTU student to work in data analysis at DTE
- 2. Committed Sandia internal funds (20k\$) to develop GUI so others can perform system simulations
- **3.** Sandia is developing the high-level architecture (HLA) for the macro-system model (MSM)
 - Can link H2Lib modules in future system analysis activities

Publications and Presentations

Presentations:

- "Power Park Simulations", Tech Val working meeting, July (2005).
- "Power Park Simulations", IEA Task 18 meeting, March (2006).

Publications:

- Lutz, A E, Bradshaw, R W, Bromberg, L and Rabinovich, A, "Thermodynamic Analysis of Hydrogen Production by Partial Oxidation Reforming," *Int J of Hyd Engy*, 29 (2004) 809-816.
- Lutz, A E, Bradshaw, R W, Keller, J O, and Witmer, D E, "Thermodynamic Analysis of Hydrogen Production by Steam Reforming," *Int J of Hyd Engy*, 28 (2003) 159-167.
- Lutz, A E, Larson, R S, and Keller, J O, "Thermodynamic Comparison of Fuel Cells to the Carnot Cycle," *Int J of Hyd Engy*, 27 (2002) 1103-1111.

