gti

Development of a Natural Gas-to-Hydrogen Fueling System

DOE Hydrogen & Fuel Cell Merit Review

William E. Liss Gas Technology Institute

May 2006

Project ID: TV4

Cooperative Agreement DE-FC04-02AL67607 This presentation does not contain proprietary or confidential information.

Overview

- > Timeline
 - Start: 2/2002
 - Completion: 7/2006
 - % Complete: 95%
- > Budget
 - Total: \$4.72MM
 - > DOE: \$2.98M
 - > C/S: \$1.75MM++

- > Barriers
 - Distributed H2 Cost:\$2.50 by 2010
 - H2 Production Eff'y 70% by 2010
- > Partners
 - GreenField Compression, QuestAir, APCI, SeQual, Pall, Lincoln Composites, Dynetek, PDC, ANGI International, Emerson Process Controls, OPW, others

Objectives

- > Develop and validate onsite, integrated natural gas-to-hydrogen fueling stations
 - Develop or test state-of-the-art subsystems
 - Address integration, operation, maintenance, reliability, and safety
 - Pre-packaged system designs with simple installation requirements
- > Leverage compact & efficient hydrogen generation technology
- > 40 to 60 kg/day system with nominal 350 bar (5075 psig) dispensing

Plan & Approach

90% Complete

100% Complete

100% Complete

- Task 1: Fuel Reforming
 - Increase efficiency
 - Improve turndown
 - Controls

Task 2: Fast-Fill Testing

- Build SOA Test Facility
- Refine CHARGE thermodynamic model
- Conduct testing
- Task 3: H2 Dispenser
 - Validate filling algorithm
 - Component availability & cost
 - Metering and fill accuracy
 - Codes & safety

> Task 4: H2 Compressor

- Analytical design
- Tribology & materials
- Empirical testing

100% Complete

Complete

Complete

%06

95%

- Reformer/purifier interface
- Task 5: H2 Purification
 - Adsorbent, membrane strategies
 - Reformer/compressor interface
- > Task 6: Design & Economics
 - System design, model, and safety
 - System controls
 - Economic model

Hydrogen Production/Fuel Processing

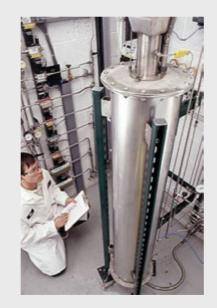
> Five Fuel Processors Built and Tested

- 1st Gen 20 kg/day fuel processor built, tested (low pressure)
- 2nd Gen 50 kg/day fuel processor built, tested (low pressure)
- 3rd Gen 50 kg/day fuel processor built, in test (pressurized unit)
- 1st Gen 10 kg/day fuel processor built, tested (low pressure)
- 2nd Gen 10 kg/day fuel processor built, in test (pressurized unit)
- US Patent issued in 2005 on GTI's fuel processor technology

> System Features Tested

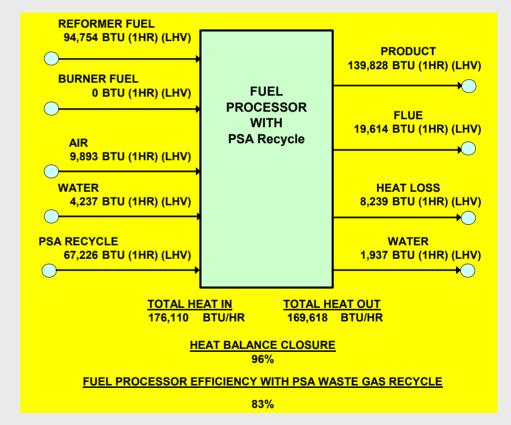
- Steam reforming, water gas shift catalysts
- Burner design, safety and temperature monitoring features
- Internal radiation materials
- Methods for internal steam generation and heat recovery
- Various desulfurization adsorbents for H₂S & odorant removal

* Includes cost share and in-kind parallel efforts by GTI



GTI Fuel Processing Systems

- Fully integrated fuel processors with low cost construction
- Internal steam generation and heat recovery
- Single stage shift
- Automated start-stop controls
- Low pressure (below 20 psig) & high pressure (up to 200 psig)



50-80 kg/day H_2 Generator

50 kg/day H₂ Fuel Processor Heat and Thermal Efficiency Balance

On track to achieving USDOE 2015 goal for 80% H2 Production Energy Efficiency

Fuel Purification

- > Developed PSA testing cells
- > Designed multi-adsorbent, multi-functional PSA
 - Deferred development with FuelMaker
- > Tested ultra-compact SeQual PSA system
- > Tested Air Products PSA system
- > Tested QuestAir's new H-3300 PSA
- > Tested Hy9 Corp. ultra-thin Pd-Cu membrane
- > Tested Pall Corporation/LANL PBI on metal membrane
- > Planned: QuestAir H-3200 unit
- Incorporated PSA tail-gas recycle to fuel processor burner for efficient operation

Fuel Purification Systems

Tested several "large" and "small" Pressure Swing Adsorption products Can meet technical PEMFC fuel purity requirements

Fuel Dispensing

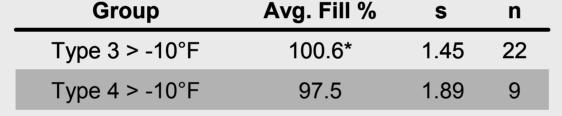
- Developed thermodynamic hydrogen cylinder filling model (CHARGEH2)
 - First principle thermodynamic model using multiple differential equations to characterize fuel station storage, dispensing, and vehicle container filling
 - Ran hundreds of cases using wide matrix of starting conditions, end conditions, flow rates, cylinder types, etc
- > Constructed full-scale high-pressure hydrogen test facility
 - Three-bank storage cascade (pressure to 7500 psig)
 - Full temperature control over wide range
- > Developed lab-based hydrogen dispenser with full instrumentation
- Performed high-pressure hydrogen mass flow meter tests using high-precision gravimetric scale

Fuel Dispensing (cont)

- > Conducted comprehensive hydrogen fast-fill tests
 - Three different cylinder types (Type 1, Type 3, Type 4)
 - Eleven different thermocouples mounted inside (in gas) and surface mounted outside to fully quantify heating effects
 - Over 100 controlled H2 fill tests from -20°F to 120°F
- > HydroFill[™] H2 dispenser fill control algorithm developed
 - Patent applications award notice received
 - Continuation-in-part with expanded claims
 - Detailed PLC-based HydroFill program developed
 - Implemented on low-cost controller
 - Licensing underway; one license in place

Fuel Dispensing (cont)

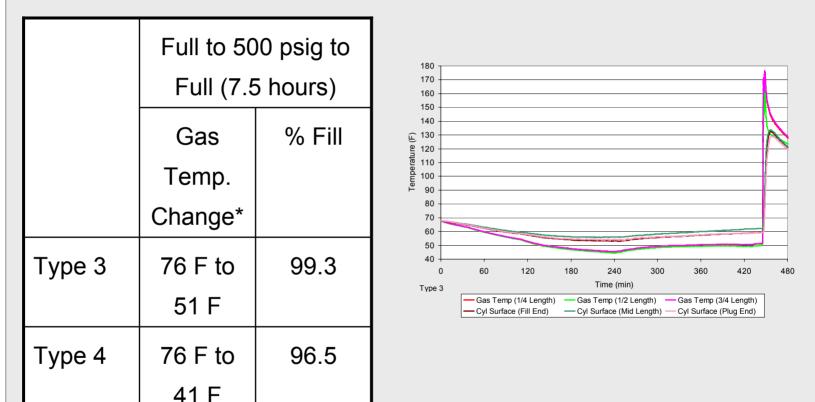
- Commercial hydrogen dispenser built, tested, and first commercial sale completed
 - Working with GreenField Compression
- Tests run to examine isentropic cooling of vehicle cylinders from drive cycle (two cylinder types) and impact on filling
 - That is, what is effect if dispenser cannot directly measure starting cylinder temperature when refilling
 - Type 3 and Type 4 cylinders
- > Performed post-test modeling to characterize dynamic heat transfer and temperature profiles throughout cylinder structure
 - Type 3 (aluminum lined, composite wrapped) and Type 4 (plastic lined, composite wrapped)



Hydrogen Dispenser & Cylinder Filling

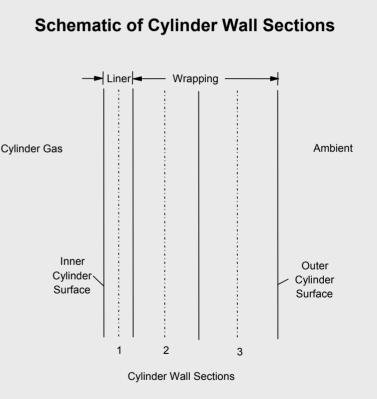
> Validation testing from -20 to 115 °F

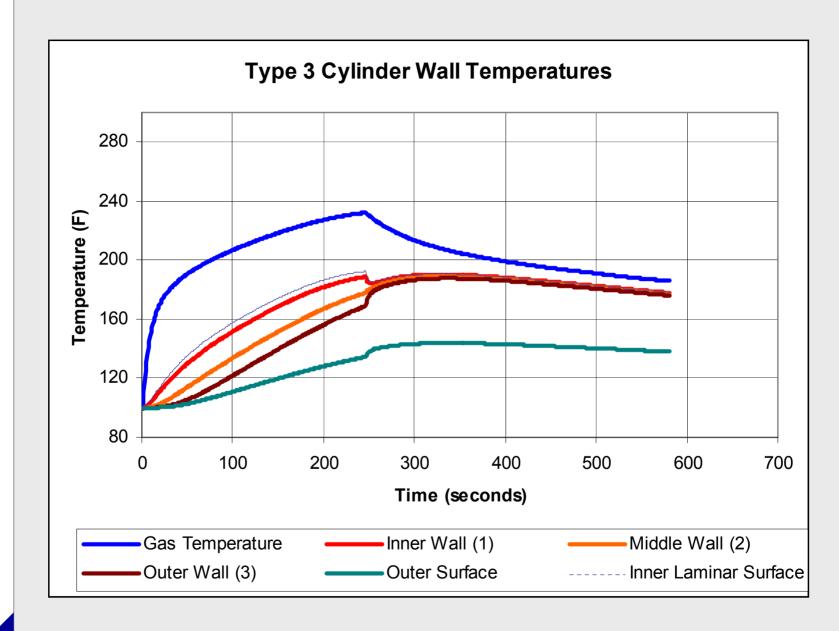
GTI/GreenField H2 dispenser
Production in Richardson, Texas


 Units being sold on commercial basis by GreenField Compression

GTI/GreenField H2 dispenser at Victoria, Vancouver Island, BC

Vehicle Cylinder "Heavy Drive Cycle" Refill Test Results

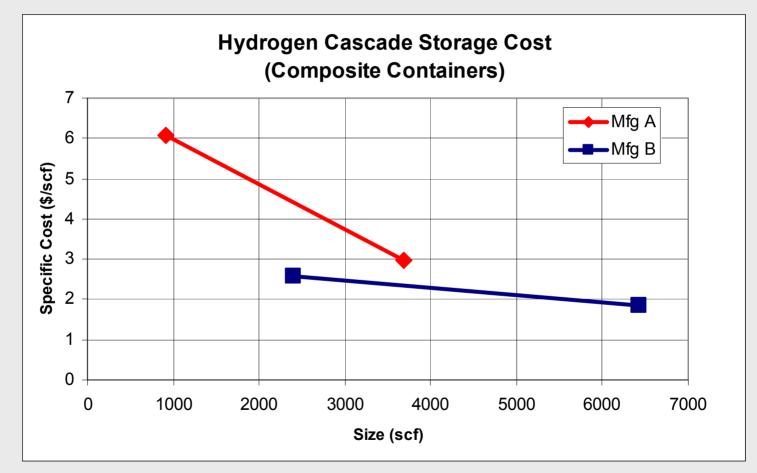



* Gas temperature change shows the starting vehicle cylinder gas temperature and the gas temperature after depressurization (just before filling)

Cylinder Material Dynamic Temperature Modeling

- > Used GTI H2 CHARGE model to assess actual material temperatures
- > Examined Type 3 & Type 4 containers
- > Segmented wall to see detailed effects

gti


Hydrogen Compression

- > Due to timing/risk, terminated subcontractor who was developing two different hydrogen compressors (low pressure and high pressure)
- Shifted to available two-stage diaphragm compressor (PDC)
- Working also with GreenField Compression on oil-free reciprocating compressor

Hydrogen Storage

- > Three-bank cascade storage built (7500 psig) using conventional ASME storage containers
- Designed three-bank canopy storage system using composite pressure vessels
- > Built two different three-bank hydrogen cascade using lightweight composite containers rated at 7000 psig
 - One stationary and other mobile

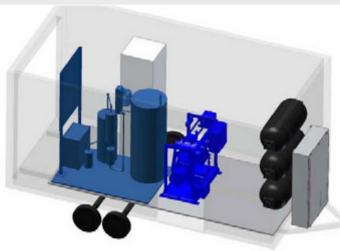
H2 Cascade Storage Cost

Circa 2004 prices

Compressed Gas Storage Cascades

Conventional CNG Cascade Using Steel Alloy (~22,000 lbs)

> Hydrogen Cascade Using Lightweight Composites (~2800 lbs)


Lightweight hydrogen cascade in GTI Mobile Fueling Station

Capacity: 2,766 scf @ 7000 psig

Container Weight: 3 * 250 lbs = 750 lbs

Mobile Hydrogen Fueling System

- > Complete trailermounted H2 fueling station
 - On-board fuel processor, clean-up, compression, storage & dispenser
 - Produce 10-15 kg/day for about 3-5 light duty vehicles per day

Next Steps

- > Complete final testing on 50 kg/day system
 - Including 1000 hour test
 - Operate as keycard access station at GTI
- > Use Mobile Hydrogen System for demo programs
- > Continue tech transfer, licensing, and commercialization
 - Work with partners and stakeholders on various hydrogen station efforts

GTI/GreenField Compression

- Working with State of Texas on next generation packaged H2 stations
- > Look to demo & deployment projects in 2007 and beyond
- > GreenField Compression
 - Leader in compressed gas systems

Summary and Conclusions

> Efficient, compact fuel processing feasible

- 75 to 80% efficiency (and higher) is possible
- On target with USDOE 2015 goal
- > Complete fill hydrogen dispenser developed and validated
 - Simple approach that avoids added cost, complexity
- > Fuel clean-up systems
 - Improved PSA solutions coming online
 - Continue looking at membrane technology advances
- > Onsite natural gas-to-hydrogen stations technically feasible

- Cost improvements will continue over time

Contact Information

William E. Liss Executive Director, Hydrogen Energy Systems Gas Technology Institute 1700 South Mount Prospect Road Des Plaines, IL 60018 (847) 768-0753 william.liss@gastechnology.org

www.gastechnology.org

Creating technology solutions with **impact**

across the energy spectrum

gti.