Validation of an Integrated Hydrogen Energy Station

Project ID: TV-06


Greg Keenan Air Products and Chemicals, Inc. May 18, 2006

This presentation contains no confidential information

Hydrogen Energy Station Vision

Objectives

Overall Project

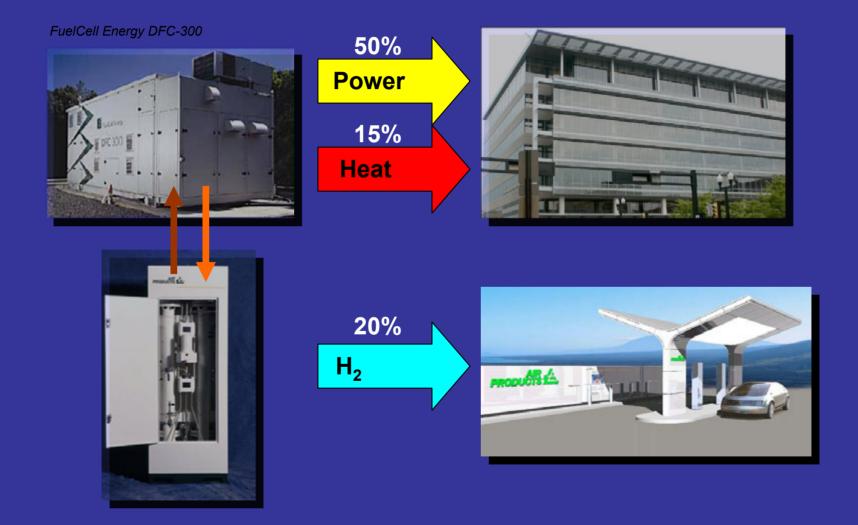
- To demonstrate the economic and technical viability of a hydrogen energy station using a high temperature fuel cell designed to produce power and hydrogen
- Maintain safety as a top priority in the system design and operation
- Past Year
 - Completed Phase 2- System Design
 - Phase 3 Go / No-Go Decision
 - Submitted Continuation Application

Objectives by Phase

- Phase 1A- Evaluated PEM (Completed FY03)
- Phase 1B- Evaluation of HTFC Coproduction (Completed FY04)
 - Co-production efficiencies: 55%-60% (LHV)
 - Potential to meet the DOE targets while producing power for less than 0.10 \$/kW
- Phase 2- System Design In Progress (In Progress)
 - Select Fuel Cell Technology
 - Engineering Development
 - GO / No-GO Decision
 - Phase 3: Detailed Design and Construction (FY06 07)
 - Phase 4: Operation, Testing, Data Collection (FY07 08)

Overview: Budget

 Total Project Budget: - \$1,446,877 • Cost Sharing: - DOE - \$723,438 - APCI and Partners - balance. FY2005 Total Spend – \$413,866 k FY2006 DOE Funding - \$1,620,086 (Pending Approval)

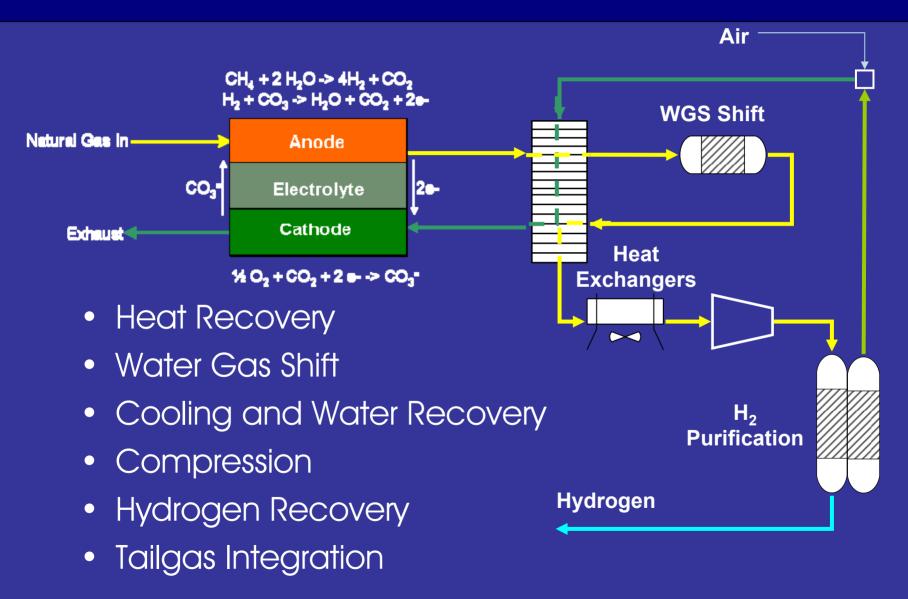

Overview: Technical Barriers and Targets

- DOE Technical Barriers
 - Technical Validation (Section 3.5.4 of HFCIT Program Report), Task #4.
 - B. Storage
 - C. H2 Refueling Infrastructure
 - I. Hydrogen and Electricity Coproduction

DOE Targets

- H2 Production (Table 3.1.2 of HFCIT Program Report), Task #3.
 - Cost of H2:
 - \$3/kg 2005
 - \$1.50/kg 2010
- Energy Station Coproduction of H₂ and Electricity (Table 3.1.2, Task #4)
 - Durability > 40,000 hours
 - Electrical Efficiency > 40%

Distributed Power and Hydrogen



Phase 2 Plan

- Engineering Design and Development

 Detailed Engineering Development,
 Design, and Cost Estimate
 - Anode Gas Handling (FCE)
 - Hydrogen Purification (APCI)
 - Integration (APCI & FCE)
 - Economics Updated
- Phase 3 Go No-Go Decision

Hydrogen Coproduction using MCFC

Anode Gas Handling

- Evaluated design options for processing anode exhaust
- Assessed safety and control requirements for integrating DFC power plants with APCI subsystem for H2 separation
- Developed preliminary P&ID
- Sized processing equipment
- Completed cost estimates
- Developed preliminary layout
- Tested critical components

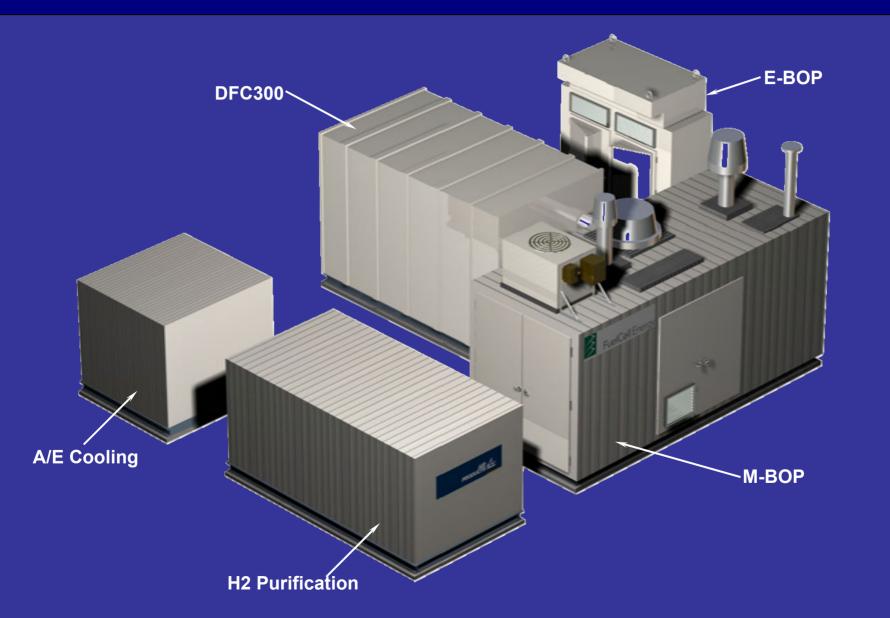
FCE Component Testing

- Fuel Cell Operation at H2 Export Design Conditions
- Electrolyte Filter
- Heat Exchanger Train
- Shift Reactor

Purification Development Program

- Investigated over 25 different hydrogen separation and purification technologies
- Selected Pressure Swing Adsorption Process for further Development
 - Cycle Simulation Completed
 - Adsorbent Mix Selected
 - Lab Testing Completed
 - Pilot Plant Verification Completed
 - Optimized PSA system
 - Patent Applications in Progress

Purification System Design


- PSA System Design Completed- PFD, P&ID, H&MB
- Compressor Specified and Selected
- Process Control Strategy Developed
- Equipment Quotes and Fabrication Estimates Completed
- Installation Costs Estimated

Integration

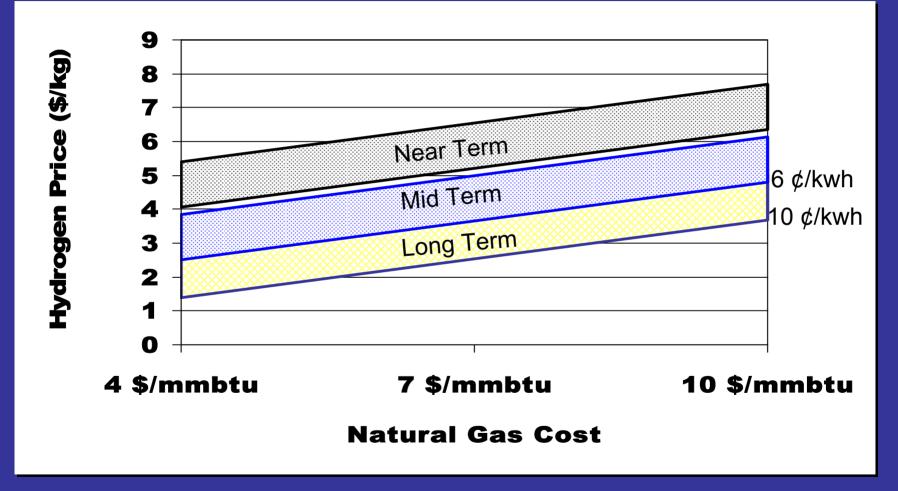
- PFD
- H&MB
- Plot Plan
- Technical Risk Plan
- Preliminary Hazop

- Process Control Strategy
- Start-up / Shutdown Plan
- Installation /Construction
- Testing Strategy
- Security Review

Hydrogen Energy Station

Projected Performance

	Units	Phase I
Overall Efficiency (Net Power + Hydrogen Product) / (Fuel)	LHV	60%
Power Efficiency Net Power / (Total Fuel – Hydrogen Product)	LHV	49%
Hydrogen Efficiency (Hydrogen Product – Purification Power) / Hydrogen Product	LHV	68%
Hydrogen Product	Nm3/hr	~ 40
Net Power w/o & w Hydrogen	kW	~ 247 / 207
Natural Gas Flow	Nm3/hr	~ 55


Projected Performance

	Units	Phase I	Phase II
Overall Efficiency (Net Power + Hydrogen Product) / (Fuel)	LHV	60%	▶ 66%
Power Efficiency Net Power / (Total Fuel – Hydrogen Product)	LHV	49%	49%
Hydrogen Efficiency (Hydrogen Product – Purification Power) / Hydrogen Product	LHV	68% -	→ 77%
Hydrogen Product	Nm3/hr	~ 40 🗖	→ ~ 80
Net Power w/o & w Hydrogen	kW	~ 247 / 207	~ 300 / 243
Natural Gas Flow	Nm3/hr	~ 55	~ 74

Economics: Assumptions

- Project Life: 15 Years
- Depreciation: 15 Years
- Inflation: 1.9%
- Tax Depreciation: 5 Year MACRS
- DCF Return: 10%
- Overheads: 20%
- Taxes: 37.8%
- Maintenance: Bottom Up Estimation

Hydrogen Energy Station Economics

Product Profile: 1200 kW Power / 700 kg/day hydrogen

Future Work

- Execute Phase III
 - Order Equipment
 - Fabricate Skids
 - Assemble and Test Complete System at FCE
 - Go-No Go for Phase 4 (18 months)
- Phase IV (FY 2008)
 - Install at Selected Site
 - 12 Month Demonstration

Response to Reviewers Questions

- "Baloney! The numbers presented were theoretical and not bottoms up analytical..."
- "The Results need to indicate whether this is an economically-viable approach to H2 Production in the long term"
- "Public condemnation as waste and abuse of DOE funds. This is a blatant attempt to use gov't money for incremental product/system improvements to the sole benefit of APCI and FCE."

