Novel Compression and Fueling Apparatus to Meet Hydrogen Vehicle Range Requirements

Todd Carlson Future Energy Solutions Air Products and Chemicals, Inc. May 17, 2006

Contributors: David Chalk (Machinery Design) Nick Pugliese (Fabrication) Mark Rice (Controls)

Project ID: TVP3

This presentation does not contain any proprietary or confidential information

Overview

- Timeline
 - Project Start 10/2002
 - Contract 5/2004
 - Project End 6/2006 (revised from 2/2006)
 - 90% Complete

- **Barriers**
 - High cost of hydrogen compression
 - Cost of hydrogen

- Budget
 - Total \$690,875
 - **–** DOE Share \$345,438
 - APCI Share \$345,438
 - 04 Funding \$317,606
 - 05 Funding \$373,088
 - 06 Funding Earmark for continued development

- Collaboration
 - Tescom
 - Genesys
 - Weh
 - OPW
 - Walther
 - Spir Star

Objectives

- Primary
 - Develop a process design for a novel compressor to achieve near isothermal compression in a single cylinder with a compression ratio of 140:1
 - Develop mechanical design for novel compressor
 - Select a test hydraulic fluid
 - Machine/Manufacture Compressor parts & components
 - Assemble prototype system and test
 - Demonstrate operation of the system
 - Final report
- Secondary
 - Investigate other fueling components to support 700 barg (10,000 psig) hydrogen fueling

Approach

- Conceptual Design
- Process Design
- Thermodynamic Data
- Fluid Selection and Testing
- Dynamic Modeling
- Component Design, Fabrication, and Testing
- Prototype
 - Site selected and compressor installed
 - Components in hand for test skid
- Long Term Testing
 - Site selection
 - Funding has been granted

Approach Design Issues

- Compressor
 - Isothermal (~50 Deg F rise)
 - High pressure (~14,000 psig)
 - Single stage
 - Low cost
- Fueling Station
 - Lower the delivered cost of hydrogen
 - Composite vessels (ASME approval)
 - Lined steel vessels are \$110,000/ft3 at 15000 psig
 - Alternate materials suitable for high pressure hydrogen service are high cost and difficult to machine.
 - Breakaway and fuel nozzle (Walther, OPW, and Weh)
 - Fueling codes

Safety

- Air Products Hydrogen Experience
 - Over 20,000 fills (75-100/week)
 - 8 fuel stations installed last year (40 total, 10 in construction)
 - Industrial hydrogen (30+ years, 55% merchant market share, 1000 gaseous/500 liquid customers, pipelines, purification/separation, reformers, electrolysis)
- Our fueling systems have undergone rigorous third party independent safety reviews
 - ABS Consulting Singapore
 - **BP PHSER review**
 - NASA White Sands, NM
 - KHK/JHPGSL Kagoshima, Japan
 - International Refinery Services Singapore
 - Beijing Government FSR Permitting
 - KGSL Seoul, Korea
 - UL and Metlabs

Timeline

	Task Name	02 Otr 2 Otr /		103 Otr 2 Otr 4)04 0+r 2 0+r 4		05	Otr 1 Ot	2006 r 2 Qtr 3 Qtr 4
1	Novel Hydrogen Compressor		+ Gu i Gu z		an ranz		GIT GITZ	GH J GH 4		
2	Start Date	♦ 10.	/1							
3	Contract Approval									
4	⊞ 1.0 Feasibility/System Design				-		-			
8	Program Review						♦ 2/3			
9	⊞ 2.0 System Design						-			
14	Ξ 3.0 Lab Installation and Testing									-
15	3.1 Compressor and Valves								фη	
16	3.2 Connectors and Flow Controls								_ ™	
17	3.3 Composite Vessels								->	
18	3.4 Installation								L Charge	
19	3.5 Testing									աղ
20	Program Review									€ 6/20
21	oxdot 4.0 Field Installation and Operation									
22	4.1 Prototype Review and Plan									l ∎ ́1
23	4.2 Installation									μ
24	4.3 Operational Field Tests									Ма
25	⊟ 5.0 Program Management									
26	5.1 Final Report									
27	5.2 Management									
41-1	T.									

Technical Accomplishments Novel Compressor – Basic Concept

- Isothermal: Gas cooled during compression (50 °F rise)
- Single Stage: Liquid piston permits high pressure ratio by elimination of piston to cylinder clearance and temperature concerns (140:1 compression ratio).
- Simple Fabrication: No exotic materials or sophisticated machining.
- Liquid Pump: Inherently lubricates all dynamic seals, off the shelf pump
- Small Footprint: 3'x4'x7'
- No External Cooling: Radiator on hydraulic loop is all that is needed
- Dynamic Gas Seals Eliminated: No gas seals to atmosphere
- Level Control: Density control
- Potential Issues: Fluid carryover, high pressure storage vessels, intensifier seal wear

Patents Pending

many typical machinery issues eliminated by liquid piston

Technical Accomplishments Existing Technology

- Diaphragm Compressor
 - Metal diaphragm separates gas from oil
 - 300 deg F temperature rise
 - 20:1 standard compression ratio
 - Up to 350 barg is bolted, higher pressure requires bootstrap
- Hydraulic Intensifier
 - Floating piston with rings separates gas from oil
 - 300 deg F temperature rise
 - 8:1 standard compression ratio
 - Smaller cylinder allows higher discharge pressures (long stroke at low RPM)

Technical Accomplishments Cylinder Pressure and Temperature

~ 50°F temperature rise for 140:1 compression ratio

Technical Accomplishments Cylinder Pressure and Temperature

Technical Accomplishments Dynamic Simulation Results

- Identified key operational issues and design parameters:
 - Surface area requirements in heat exchanger and heat transfer coefficients for near isothermal operation
 - Liquid inventory management needs (pressure/flow regulation)
- Quantitative results on potential sources of inefficiency:
 - Hydraulic intensifier friction
 - Circuit DPs
 - Hydrogen solubility in compression fluid
 - Heat transfer limits and design of heat exchanger
- Process sensitivities to the following parameters studied:
 - Initial accumulator gas volume
 - Pump flow
 - Hydraulic intensifier flow
 - Valve flow coefficients

novel H₂ compressor unit is feasible

Technical Accomplishments Pressure Analysis

- Automotive OEM's are pursuing 700 barg fueling to achieve US norm of 300 mile range.
- Fast fill (~ 4-6 minutes) is the method with the highest commercial potential.
- Cascade fueling is the most often used method of achieving a low cost, fast fill. This is not possible at 700 barg with steel storage cylinders due to cost and hydrogen embrittlement concerns.
- To achieve full fills, cascade filling requires a minimum of 25% overpressure to counter vehicle tank heating.
- Fast fill to 700 barg will require cooling of the hydrogen and communications between the vehicle and dispenser.
- ASME and Air Products requirements for relief valves (set at vessel MAWP) impose a maximum operating pressure of 90% of MAWP.

(700 Barg * 125%) / 90% = 972 Barg MAWP (14100 psig)

System pressure requirement is 14100 psig MAWP

Technical Accomplishments Cost / Efficiency

	Today	Novel Compressor Prototype	Novel Compressor "Product" (10 per year)
Cost	\$1.00	\$.40 - \$.50	\$.25 - \$.30
Efficiency		In principle, will require less power. Testing to determine.	

Flow = $70 \operatorname{scfh} H2$ Pin = $100 \operatorname{psig}$ Pout = $14,000 \operatorname{psig}$

Technical Accomplishments Dispenser Update

- Dispensers have been updated to include a breakaway and nozzle shield.
- New HMI touchscreen allows use of a single panel for control and display.
- Class I Division 1, Group B design for dispenser.
- Control panel is separate enclosure rated for Class I Division 2, Group B.
- Dispenser components upgraded to 15,000 psig MAWP (700 barg).
- Fueling hose with 6:1 safety factor.
- New remote data acquistion system is being piloted (e-Ram).

Future Work

- Long term operational test.
- Determine overall costs.
- Determine feasibility of future use.
- Identify barriers and other work needed for 700 barg fueling.
- Final Report

Relevance: Develop a compressor that enables 700 barg fueling by lowering the cost of hydrogen.

Approach: Design a compressor that can dramatically lower the cost, maintenance, and power requirements for fueling.

Accomplishments: Developed a 700 barg dispensing system. Compressor is built and undergoing testing.

Collaborations: Work with industry leaders and develop required hardware to support 700 barg fueling.

Continued testing and installation into a fueling station.

Future:

Interactions/Collaborations

- Air Products and Chemicals, Inc.
 - Future Energy Solutions
 - Advanced Systems Machinery
 - Advanced Controls
 - Cryomachinery
 - Dynamic Modeling
 - Corporate Safety
- Tescom
- Spir Star
- Barksdale
- Ashcroft
- Weh
- OPW
- Walther

tell me more www.airproducts.com

Response to 2005 Reviewer's Comments

Potential hurdles not identified.

We are working to identify the potential hurdles to compressor operation. A test plan will be executed to check each portion of the system prior to full operation.

Publications and Presentations

- May 2003 DOE Peer Review
- May 2004 DOE Peer Review
- May 2005 DOE Peer Review

Issues

- Determined that the original Krytox oil could react with hydrogen. Switched to a mineral oil that is much lower cost and will act as a better lubricant.
- Identified some problem materials (17-4 ph steel) used for trim on some valves. Identified an alternate heat treatment to repair the items, if they have not been in hydrogen service.
- Will investigate other fluids and absorption vessels. There is potential for vapor carryover of the mineral oil.
- Need to monitor the intensifier seal rings for wear and check coalescer for wear products.
- Medium pressure component lead times have gone to 4x normal due to Hurricane Katrina and the rebuilding effort.

Hydrogen Safety

The most significant hydrogen hazard associated with this project is:

Drawing air into the compressor suction and compressing into the high pressure hydrogen storage vessels. Given the correct conditions, this could result in a high pressure flammable gas mix. Deflagration or detonation of this mixture could result in failure of the vessels.

Hydrogen Safety

Our approach to deal with this hazard is:

We have completed a Level of Protection Analysis that takes all physical and operating conditions into consideration to determine the probability of the event occurring. We also utilize a low pressure switch on the compressor inlet (hard-wired to PLC power). This pressure switch is functionally tested every quarter.

