HYDROGEN FROM BIOMASS FOR URBAN TRANSPORTATION

Kofi B. Bota Clark Atlanta University

May 16-19, 2005 Arlington, VA DOE Hydrogen Program Review

This presentation does not contain any proprietary or confidential information.

TVP 4

Overview

Timeline

- Project start date: 2003
- Project end date: 2004
- Percent complete: 100%

Barriers

- Feedstock cost and availability
- Efficiency of pyrolysis and reforming technologies
- Durable, efficient and impurity tolerant catalysts
- Hydrogen separation and purification
- Market and delivery

Partners

- National Renewable Energy Lab
- Eprida, Inc.

OBJECTIVES

- Undertake the engineering research and pilot scale process development studies relating to:
 - Production of hydrogen from biomass (e.g., agricultural residues) for $2.90/kg H_2$ by 2010; 2.30 by 2015
 - Separation, safe storage and utilization of the hydrogen
 - Production and identification of uses of the co-products
- Increase diversity of the Nation's workforce and the broader impact of the project through the education and training of underrepresented minorities.

APPROACH

- Develop process based on biomass pyrolysis and steam reforming of pyrolysis vapors (bio-oils and gases).
- Perform catalytic steam reforming in a fluidized-bed (25-250 kg/day H₂ production)
- Conduct pyrolysis at: T: 500°C; P: 10 psig; Feed Rate: 50-500 kg/hr pelletized peanut shells.
- Study reforming at: T: 850°C; P: 6 psig; $H_2O/C = 5$, Catalyst: nickel-based (300-500 microns)

Schematic Flow Diagram of the Biomass Pyrolysis-reformer Process

Photo of Hydrogen Production System

Hydrogen Production Control

Photo of Hydrogen Flame

Total Gas Composition VS. Time (N2-free basis)

Nitrogen free-Base Gas Composition Vs.Time (24hrs)

-H2 % CH4% ----002% 00%

Temperature and differential pressure of the catalytic

reformer

Typical Analysis of Peanut Shell Feedstock

•	C	omponent	%
	_	Lignin	34.8
	_	Glucan	21.1
	_	Extractives	14.2
	_	Protein	11.1
	_	Xylan	- 7.9
	_	Ash	- 3.4
	_	Arabinan	0.7
	_	Galactan	- 0.2
	_	Mannan	0.1
	_	Others (e.g., free carbohydrates)	6.5

TYPICAL PRODUCT COMPOSITION/ YIELDS

Pyrolyzer	(Yields)	Reformer (Gas prod composition, on dry free basis)	uct N ₂ -
Char	32%	Hydrogen	49%
Water	32%	Carbon Dioxide	36%
Bio-Oils	31%	Carbon Monoxide	9%
Gases	5%	Methane	8%

Pyrolysis Bio-Oil Product

- Empirical Formula: CH_{1.9}O_{0.7}
- Water: 15 25%
- Organics: 75 85%
 - Aldehydes, alcohols and acids from carbohydrate fraction
 - Phenolics from lignin fraction

Representative Compounds

Water	Ethanol
Cyclohexanol	Formic Acid
Glucose	Phenol
2-Butanone	Dodecanoic acid

Methanol Acetic Acid O-cresol Tannin

CONCLUSIONS

- The pilot scale plant has increased the hydrogen production rate by orders of magnitude comprising to the bench scale
- Using peanut shells as feedstock, the overall yield from this process is up to 7 wt% hydrogen and 32 wt% charcoal/activated carbon
- The preliminary techno-economic analysis indicates that the integrated process has the potential of producing hydrogen at the cost of about US\$6.5/GJ

ACCOMPLISHMENTS

- Completed design, construction and testing of reformer (Phase 1)
- Completed integration of reformer with pyrolyzer (Phase 2)
- Completed 100 hours of successful operation of pilot unit (Phase 2)
- Completed modifications for 1,000 hours operation
- Completed 24 hours catalyst and process testing
- Identified potential co-products options
- Developed partnership and collaboration with potential companies/organizations
- Educated and trained several underrepresented minorities on project

ACKNOWLEDGEMENTS

- Support of Department of Energy under Grant # DE-FG26-03NT41714.
- Support of the Partner Institutions
 - Clark Atlanta University
 - Eprida Scientific Carbons Inc.
 - Enviro-Tech Enterprises Inc.
 - Georgia Institute of Technology
 - Oak Ridge National Lab, Oak Ridge, TN
 - National Renewable Energy Laboratory, CO
 - University of Georgia, Athens